The present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake system. It was found in some cases the local zones with extreme heat generated in contacting surfaces due to the non-uniformity of the contact pressure during the braking process, where this phenomenon can be led to an increase in the magnitudes of thermal stresses. It was found that the most significant factor on the level of generated temperatures (heat generation) is the initial vehicle's velocity. Furthermore, it was found that the maximum difference between the experimental and numerical results was not exceeding 6%.
Abstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreKE Sharquie, AA Noaimi, AA Hajji, Journal of Cosmetics, Dermatological Sciences and Applications, 2014 - Cited by 5
In this work the analysis of laser beam profile system ,using a two dimensional CCD (Charge Coupled Device) arrays, is established. The system is capable of producing video graphics that give a two dimensional image of laser beam. The video graphics system creates color distribution that represent the intensity distribution of the laser beam or the energy profile of the beam. The software used is capable of analyzing and displaying the profile in four different methods that is , color code intensity contouring , intensity shareholding, intensity cross section along two dimension x-y, and three dimensional plot of the beam intensity given in the same display.
Background: Sliding mechanics is widely used during orthodontic treatment. One of the disadvantages of this mechanics is the friction generated at the bracket/archwire interface, which may reduce the amount of desired orthodontic movement obtained. The aim of the present in vitro study was to evaluate and compare the static frictional forces produced by two passive self-ligating brackets stainless-steel and hybrid and two conventional brackets stainless-steel and monocrystal ligated with stainless-steel ligature wire at two degrees of torque(zero and twenty) under dry condition. Materials and method: One hundred and sixty brackets were used in this study divided into four groups each group consisted of forty brackets these are: Two self-li
... Show MoreBuckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreThis paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm
... Show More