The present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake system. It was found in some cases the local zones with extreme heat generated in contacting surfaces due to the non-uniformity of the contact pressure during the braking process, where this phenomenon can be led to an increase in the magnitudes of thermal stresses. It was found that the most significant factor on the level of generated temperatures (heat generation) is the initial vehicle's velocity. Furthermore, it was found that the maximum difference between the experimental and numerical results was not exceeding 6%.
In this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of
In this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreThis study deals with the aircraft wing analysis (numerical and experimental) which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651) the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34) specimen of (aluminum alloy 7075-T651) were tested using alternating bending fatigue machine rig. The t
... Show MoreDetermining the aerodynamic characteristics of iced airfoil is an important step in aircraft design. The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil
... Show MoreThe experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
In this paper, we deal with a dynamical system that can demonstrate a chaotic attractor of Rossleroscillator. We simulate the Rosslerequations numerically then we investigate the model experimentally. Numerically, the Rossler parameter a and b were fixed and c was changed.The evolution of the system exhibits period, period-doubling, second period doubling, and chaos when control parameters are changed. This evolution can be seen by analyze the time series, the bifurcation diagrams and phase space. Experimentally, the evolution of the system exhibited the same numerical behavior by changing the resistance (Rv) in Rossler circuit that represent as control parameter.
Reducing a structure’s self-weight is the main goal and a major challenge for most civil constructions, especially in tall buildings and earthquake-affected buildings. One of the most adopted techniques to reduce the self-weight of concrete structures is applying voids in certain positions through the structure, just like a voided slab or BubbleDeck slab. This research aims to study, experimentally and theoretically, the structural behavior of BubbleDeck reinforced concrete slabs under the effect of harmonic load. Tow-way BubbleDeck slab of 2500mm×2500m×200mm dimensions and uniformly distributed bubbles of 120mm diameter and 160mm spacing c/c was tested experimentally under the effect of harmonic load. Numerical analysis was als
... Show More