In this work, PAni nanofibers (NFs) are successfully synthesized via hydrothermal method. The structural, surface morphological, optical, electrical and H2S gas sensing properties have been investigated for PAni thin films deposited by spin coating technique. The XRD pattern reveals crystalline nature of PAni NFs with crystallite size of 9.2 nm. The SEM image of Polyaniline clearly indicates that the polymer possesses nanofiber like structure. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc’s equation. Intense hotoluminescence (PL) peaks at 309, 340 and 605 nm are observed. The electrical properties such as D.C. conductivity and Hall effect have been studied where D.C. conductivity shows reversible insulator-to-metal electrical behavior. Hall measurements for PAni reveal p-type conductivity. The H2S toxic gas sensing properties of PAni NFs thin film are investigated as a function of time and operating temperature. High sensitivity (528%) was achieved at operating temperature of 200 °C with fast response and recovery times
Aims of this research to determine asbestos fibers levels in surrounding air of some crowded sites of Baghdad city were monitored in summer 2020. Collection of samples was conducted by directing air flow to a mixed cellulose ester membrane filter mounted on an open‑faced filter holder using sniffer a low flow sampling pump, samples of air were collected from five studied areas selected in some heavy traffic areas of Baghdad city, (Al-Bayaa and Al-Shurta tunnel, Al-Jadriya, and Al-Meshin commercial complex, control), then analyzed to determine concentrations of asbestos fibers. Counting of asbestos on the filters was carried out through using both scanning electron microscope SEM and an energy dispersive X‑ray system EDS to count
... Show MoreChronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy.
Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 1
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected powe
... Show MoreThe influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show MoreOptical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder
Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show More