Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this aspect of the Deepfake detection task and proposes pre-processing steps to improve accuracy and close the gap between training and validation results with simple operations. Additionally, it differed from others by dealing with the positions of the face in various directions within the image, distinguishing the concerned face in an image containing multiple faces, and segmentation the face using facial landmarks points. All these were done using face detection, face box attributes, facial landmarks, and key points from the MediaPipe tool with the pre-trained model (DenseNet121). Lastly, the proposed model was evaluated using Deepfake Detection Challenge datasets, and after training for a few epochs, it achieved an accuracy of 97% in detecting the Deepfake
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show MoreThe triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreThis study explored the development and qualities of the response of electrochemical properties of enrofloxacin-selective electrodes using precipitation based on producing phosphotungstic, after utilizing a matrix of polyvinyl chloride (PVC) and dibutyl phthalate or dibutyl phosphate as a plasticizer. The resulting membrane sensors were an enrofloxacin-phosphotungstic electrode (sensors 1) and an ENR-DOP-PTA electrode (sensors 2). Linear responses of (ENR-DBPH-PTA) and (ENR-DOP-PTA) within the concentration ranges of 2.1×10-6-10-1 and 3.0×10-6-10-2 mol. L-1, respectively, for both sensors were observed. Slopes of 51.61±0.24 and 39.40± 0.16 mV/decade and pH ranges equal to 2.5-8.5
... Show MoreThe current research aims to identify measure classroom flexibility for kindergartens children, identify the correlation between the classroom flexibility of kindergartens children and the gender of the child, and identify the correlation between the classroom flexibility of kindergartens children and their classroom. The current research sample consisted of (200) boys and girls selected randomly from the governmental Riyadh affiliated with the six directorates of education of Baghdad on both sides (al-karkh - al-rasafa). in order to achieve the objectives of the current research, this required including two tools, one is the scale of classroom flexibility for the kindergartens' children, which was constructed by the researcher based on
... Show MoreThe traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show Morenumerical study is applied to the mercury-argon mixture by solving the boltzman transport equation for different mixture percentage.