Preferred Language
Articles
/
7RajaIgBVTCNdQwCbHYK
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this aspect of the Deepfake detection task and proposes pre-processing steps to improve accuracy and close the gap between training and validation results with simple operations. Additionally, it differed from others by dealing with the positions of the face in various directions within the image, distinguishing the concerned face in an image containing multiple faces, and segmentation the face using facial landmarks points. All these were done using face detection, face box attributes, facial landmarks, and key points from the MediaPipe tool with the pre-trained model (DenseNet121). Lastly, the proposed model was evaluated using Deepfake Detection Challenge datasets, and after training for a few epochs, it achieved an accuracy of 97% in detecting the Deepfake

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 07 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Early detection of first degree relatives to type-II diabetes mellitus
...Show More Authors

Objective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questio

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design The Modified Multi Practical Swarm Optimization To Enhance Fraud Detection
...Show More Authors

     Financial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 05 2025
Journal Name
Science Journal Of University Of Zakho
DETECTION AND RECOGNITION OF IRAQI LICENSE PLATES USING CONVOLUTIONAL NEURAL NETWORKS
...Show More Authors

Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Detection of Suicidal Ideation on Twitter using Machine Learning & Ensemble Approaches
...Show More Authors

Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o

... Show More
View Publication Preview PDF
Scopus (41)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Wed Jul 09 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Photogrammetric analysis of facial soft tissue profile of Iraqi adults sample with Class II div.1 and Class III malocclusion: (A comparative study)
...Show More Authors

Background: The purposes of this study were to determine the photogrammetric soft tissue facial profile measurements for Iraqi adults sample with class II div.1 and class III malocclusion using standardized photographic techniques and to verify the existence of possible gender differences. Materials & methods: Seventy five Iraqi adult subjects, 50 class II div.1 malocclusion (24 males and 26 females), 25 class III malocclusion (14 males and 11 females), with an age range from 18-25 years. Each individual was subjected to clinical examination and digital standardized right side photographic records were taken in the natural head position. The photographs were analyzed using AutoCAD program 2007 to measure the distances and angles used in t

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Arabic Characters Recognition by Edge Detection Using Connected Component Contour(CO3)
...Show More Authors

  In the present paper, Arabic Character Recognition  Edge detection method based on contour and connected components  is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content.         The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Tropical Journal Of Natural Product Research
Detection of Herpes Simplex Virus Type 1 in Patients Affected by Conjunctivitis
...Show More Authors

Herpes simplex virus (HSV) is a common human pathogen that causes severe infections in newborns and immunocompromised patients. Conjunctivitis or corneal epithelial keratitis is caused by HSV type 1 all over the world and at all times of the year. The present study was aimed at detecting HSV in patients suffering from conjunctivitis. One hundred and ten (110) clinical samples (90 patients and 20 controls, both males and females) of eye conjunctiva swabs were collected from patients of different ages. The samples were analyzed using qPCR and ELISA techniques. The qPCR results revealed that HSV was present in 47 (52.2%) of the 90 patients who were infected. Of these patients, 25 (48.0%) were males and 22 (57.8%) were females, indicati

... Show More
View Publication Preview PDF
Scopus
Publication Date
Wed Mar 25 2020
Journal Name
International Journal Of Drug Delivery Technology
Detection of Single Nucleotide Polymorphisms (SNPs) for Genes Cause Drug-Resistant in Iraqi Mycobacterium Tuberculosis isolates by new Pyrophosphate Technique.
...Show More Authors

In this search, a new pyrophosphate technique was proved. The technique was employed to single- nucleotide polymorphisms (SNPs), which diagnosis using a one-base extension reaction. Three Mycobacterium tuberculosis genes were chosen (Rpob, InhA, KatG) genes. Fifty-four specimens were used in this study fifty-three proved as drug-resistant specimens by The Iraqi Institute of Chest and Respiratory Diseases in Baghdad.; also one specimen was used as a negative control. The steps of this technique were by used a specific primer within each aliquot that has a short 3-OH end of the base of the target gene that was hybridized to the single-stranded DNA template. Then, the Taq polymerase enzyme and one of either α-thio-dATP, dTTP, dGTP, or dCTP

... Show More
Crossref