Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this aspect of the Deepfake detection task and proposes pre-processing steps to improve accuracy and close the gap between training and validation results with simple operations. Additionally, it differed from others by dealing with the positions of the face in various directions within the image, distinguishing the concerned face in an image containing multiple faces, and segmentation the face using facial landmarks points. All these were done using face detection, face box attributes, facial landmarks, and key points from the MediaPipe tool with the pre-trained model (DenseNet121). Lastly, the proposed model was evaluated using Deepfake Detection Challenge datasets, and after training for a few epochs, it achieved an accuracy of 97% in detecting the Deepfake
Beta-thalassemia major (β-TM) is inheritable condition with many complications especially in children. The blood-borne viral infection was proposed as a risk factor due to recurrent blood transfusion regimen (hemotherapy).
This study aimed to investigate Human parvovirus B19 (PVB19) prevalence in β-TM patients by serological and molecular means.
This is a cross-section
The Present investigation includes the isolation and identification of Pseudomonas aeruginosa for different cases of hospital contamination from 1/ 6/2003 to 30/9/2004, the identification of bacteria depended on morphological , cultural and biochemical characters, 37 of isolates were diagnosed from 70 smears from wounds and burns beside 25 isolates were identified from 200 smears taken from operation theater and hospital wards including the floors , walls , sources of light and operation equipment the sensitivity of all isolates to antibiotic were done , which exhibited complete sensitivity to Ciprofloxacin , Ceftraixon, Tobromycin and Gentamysin ,while they were complete resist to Amoxcillin , Tetracyclin , Nitrofurantion , Clindamycin C
... Show MoreThis study detects the presence of cholesterol in an Iraqi plant named Suaeda baccata Forsk of the family Chenopodiacae, wildly and widely grown in Iraq. The absence of any publication concerning the sterol content of this Suaeda specie, and the industrial importance of cholesterol depending on its role as a precursor in the synthesis of some hormones, like progesterone, acquired this study its value. The investigations revealed the presence of cholesterol that was proved by TLC together with the standard compound cholesterol, and anisaldehyde spray reagent using three different solvent systems, then authenticated by HPLC, in which the reten
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreObjectives of the study: The main objective of the study is to assess the prevalence of hypertension among
cardiac diseases patients and to fiend out relation ship between hypertension and cardiovascular diseases.
Methodology: A descriptive study, using interviewer and questionnaire technique was conducted on cardiac
diseases inpatients of clinic unite at Kirkuk and Azady hospitals from 17th ,June ,2012 to 1st, March , 2013.
Non – probability (purposive) sample of (148) adult patients, (81) females and (67) males with heart disease are
selected from inpatients of clinic unite at Kirkuk and Azady hospitals at kirkuk city. Questionnaire was
developed to assess the items which are related to heart disease patient's (Dise
Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreBeyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning from voice forensic analysis to personalized advertising, healthcare monitoring, and human-computer interaction. However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using Wav2Vec2.0 embeddings. These are then channeled into our self-attentio
... Show MoreEpithelial ovarian cancer is the leading cause of cancer deaths from gynecological malignancies. Angiogenesis is considered essential for tumor growth and the development of metastases. VEGF and IL?8 are potent angiostimulatory molecules and their expression has been demonstrated in many solid tumors, including ovarian cancer.VEGF and IL-8 concentrations were measured by ELISA test (HumanVEGF,IL-8). Bioassay ELISA/ US Biological / USA).The median VEGF and IL-8 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors and in healthy controls.Pretreatment VEGF and IL-8 serum levels might be regarded as an additional tool in the differentiation of ovarian tumors.