Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results based on MSE were compared with those obtained from the moments method and showed that the Canonical GA and compact GA can give good estimator of θ for the MA(1) model. Another comparison has been conducted to show that the cGA method has less number of function evaluations, minimum searched space percentage, faster convergence speed and has a higher optimal precision than that of the Canonical GA.
Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreIn this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
Structure of network, which is known as community detection in networks, has received a great attention in diverse topics, including social sciences, biological studies, politics, etc. There are a large number of studies and practical approaches that were designed to solve the problem of finding the structure of the network. The definition of complex network model based on clustering is a non-deterministic polynomial-time hardness (NP-hard) problem. There are no ideal techniques to define the clustering. Here, we present a statistical approach based on using the likelihood function of a Stochastic Block Model (SBM). The objective is to define the general model and select the best model with high quality. Therefor
... Show More