new, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreThe objective of the study to develop an amorphous solid dispersion for poorly soluble raltegravir by hot melt extrusion (HME) technique. A novel solubility improving agent plasdone s630 was utilized. The HME raltegravir was formulated into tablet by direct compression method. The prepared tablets were assessed for all pre and post-compression parameters. The drug- excipients interaction was examined by FTIR and DSC. All formulas displayed complying with pharmacopoeial measures. The study reveals that formula prepared by utilizing drug and plasdone S630 at 1:1.5 proportion and span 20 at concentration about 30mg (trail-6) has given highest dissolution rate than contrasted with various formulas of raltegravir.
Keywor
... Show MoreThe enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%. The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran
... Show MoreN-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
Cadmium element is one of the group IIB and classified as heavy metal and effects on human health and environment. The present work concerns with the biosorption of Cd(II) ions from aqueous solution using the outer layer of onions. Adsorption of the used ions was found to be pH dependent and maximum removal of the ions by outer layer of onions and was found to be 99.7%.
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreZinc Oxide (ZnO) is considered as one of the best materials already used as a window layer in solar cells due to its antireflective capability. The ZnO/MgF2 bilayer thin film is more efficient as antireflective coating. In this work, ZnO and ZnO/MgF2 thin films were deposited on glass substrate using pulsed laser deposition and thermal evaporation deposition methods. The optical measurements indicated that ZnO thin layer has an energy gap of (3.02 eV) while ZnO/MgF2 bilayer gives rise to an increase in the energy gap. ZnO/MgF2 bilayer shows a high energy gap (3.77 eV) with low reflectance (1.1-10 %) and refractive index (1.9) leading to high transmittance, this bilayer could be a good candidate optical material to improve the performance
... Show MoreIn this work, the photocatalytic degradation of indigo carmine (IC) using zinc oxide suspension was studied. The effect of influential parameters such as initial indigo carmine concentration and catalyst loading were studied with the effect of Vis irradiation in the presence of reused ZnO was also investigated. The increased in initial dye concentration decreased the photodegradation and the increased catalyst loading increased the degradation percentage and the reused-ZnO exhibits lower photocatalytic activity than the ZnO catalyst. It has been found that the photocatalytic degradation of indigo carmine obeyed the pseudo-first-order kinetic reaction in presence of zinc oxide. This was found from plotting the relationship between ln
... Show MoreZinc Oxide thin film of 2 μm thickness has been grown on glass substrate by pulsed laser deposition technique at substrate temperature of 500 oC under the vacuum pressure of 8×10-2 mbar. The optical properties concerning the absorption, and transmission spectra were studied for the prepared thin film. From the transmission spectra, the optical gap and linear refractive index of the ZnO thin film was determined. The structure of the ZnO thin film was tested with X-Ray diffraction and it was formed to be a polycrystalline with many peaks.
The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show More