In this work, two graphene oxide (GO) samples were prepared using the Hummers method with graphite (g) and KMnO4 (g) ratios of 1:3 (GO3) and 1:6 (GO6). The effect of oxidation degree on the structural, electrical, and dielectric properties of the GO samples was investigated. The structures of the GO samples were studied using various techniques, including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS). XRD analysis revealed an increase in the interlayer spacing and a decrease in the number of layers of the samples with increasing oxidant content. The two GO samples have giant permittivity values of ~105 in the low-frequency range. The characteristics of the functional groups and defects were clarified in terms of their high permittivity. The AC conductivity of the GO samples obeyed Jonscher’s power law. The AC conductivities of GO3 and GO6 were calculated as 0.07 and 0.01 S/m at 1 MHz, respectively. The power exponent s has values in the range 0 < s < 1. In addition, a low loss tangent was observed for GO6 in the high-frequency range. KEY WORDS: Jonscher’s power law, AC conductivity, Defect, Permittivity, Loss tangent, Graphene oxide Bull. Chem. Soc. Ethiop. 2025, 39(12), 2583-2592 DOI: https://dx.doi.org/10.4314/bcse.v39i12.17
In this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and wate
... Show MoreBackground: The incorporation of rubber has not been entirely successful because it can have detrimental effects on the transverse Strength and hence the rigidity of the denture base. Materials and methods: Zirconium oxide nanoparticales were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 3% by weight then mixed with powder using conventional procedure.(100) samples were prepared and divided into five groups according to the test performed ,Each group consisted of 20 specimens and these were subdivided into 2 groupsGroup (A): control group (10 specimens of high impact acrylic resin without zirconium oxide) and Group (B):zirconium oxide group(10 specimens of high impac
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreGas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was
... Show MoreThis paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreIn this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and water absorption the best ratio of 3wt
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
Films of silver oxide of different thickness have been prepared by the chemical spray paralysis. Transmission and absorption spectra have recorded in order to study the effect of increasing thickness on some optical parameter such as reflectance, refractive index , and dielectric constant in its two parts . This study reveals that all these paramters affect by increasing the thickness .