Triticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer was used to measure reflectance between 400 and 2500 nm wavelength for seeds that had been infested at different levels with six different growth stages from egg to adult. The reflectance data were analyzed by several generalized linear regression and classification methods. Different degrees of infestation were particularly well correlated with reflectances in the 400–409 nm range and other wavelengths up to 967 nm, although later growth stages could be detected more accurately than early infestation. Stepwise variable selection produced the lowest mean square differences and yielded a high R² value (0.988) for the 4th instars, pupae and adults inside the seed. Models were developed to predict the level of infestation in triticale by rice weevils of different growth stages. Overall, this study showed a great potential of using reflectance spectral signatures for detection of the level of infestation of triticale seed by rice weevils of different growth stages
Lymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreIn this paper , two method which deal with finding the optimal value for adaptive smoothing constant, are compared .This constant is used in adaptive Single Exponential Smoothing (ASES).
The comparing is between a method uses time domain and another uses frequency domain when the data contain outlier value for autoregressive model of order one AR(1) , or Markov Model, when the time series are stationary and non stationary with deferent samples .
The study aims to investigate the degree of student teachers at Sultan Qaboos University acquired skills in teaching Arabic via a virtual micro-teaching lab, as well as to reveal the difficulties they faced and their development proposals. To do this, the researchers developed a questionnaire divided into four dimensions: planning, implementation, evaluation, and
ethical values for the teaching profession, in addition to two open-ended questions to identify difficulties and suggestions. It was administered to (30) student teachers. The results revealed that the average degree of student-teacher acquisition of skills was high in its four dimensions. It ranged between (39.2) to (82.2), while the overall average was (56.2).
... Show MoreAmong more than 200 different human papilloma viral genotypes, the association of low oncogenic risk-HPV genotypes have been recognized with a variety of oral, oropharyngeal, nasopharyngeal benign tumors as well as non-neoplastic polyposis and papillomas and adenoid hypertrophy. This prospective case- control study aims to determine the rate of DNA detection of HPV genotype 6/11 in nasopharyngeal adeno- tonsillar tissues from a group of patients subjected to adenoctomy for adenoid hypertrophy . A total number of nasopharyngeal adeno-tonsillar tissue specimens from pediatric patients with adenoid hypertrophy were enrolled; 40 nasopharyngeal adeno-tonsillar tissues from patients with adenoid hypertrophy, and 20 normal nasal tissue specimen
... Show MoreThe virulent genes are the key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonization and survival of the bacterium in or cause damage to the host are pathogenicity determinants. This study aimed to investigate the prevalence of virulence factors (esp, agg, gelE, CylA) in E. faecalis isolated from diverse human clinical collected in Iraqi patient , as well as to assess their ability to form biofilm and to determine their haemolytic and gelatinase activities. Thirty-two isolates of bacteria Enterococcus faecalis were obtained, including 15 isolates (46.87%) of the urine, 6 isolates (18.75%) for each of the stool and uterine secretions, and 5 isolates (15.62%) of the wo
... Show More