N-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
Wireless lietworking is· constantly improving, changing and
though ba ic principle is the same. ['nstead of using standard cables to transmit information fmm one point to another (qr more), it .uses radio signals. This paper presents .a case study considedng real-time remote
cqntroJ using Wireless UDP/JP-based networks,. The aim of-this werk is to
reduce real-time· remote control system based upon a simulatio.n model,
which can operate via general communication l"]etworks, whieh on bodies. modern wireles tcchnolqgy.
The first part includes· a brief
... Show MoreIn the last decades, using mineral admixture in concrete became very necessary to improve concrete properties and reduce CO2 emissions associated with the cement production process. Subsequently, more sustainable concrete can be obtained. Ternary blended cement containing two different types of mineral admixture can achieve ambitious steps in this trend. In this research, the synergic effects of mineral admixtures in ternary blended cement and its effects on concrete fresh properties, strength, durability, and efficiency factors of mineral admixture in ternary blended cement, were reviewed. The main conclusion reached after reviewing many literature pieces is that the concrete with ternary blended cement
... Show MoreSolar energy usage in Iraq is facing many issues; one of those is the accumulation “of the dust on the surface of the solar module which” would highly lower its efficiency. The present work study the effect of dust accumulation” on installing fixed solar modules with different inclined angles 15o, 33o, 45o, 60o. Evaluation of the solar modules performance under different circumstance conditions such as rain, wind and humidity are considered in study of dust effect on solar module performance. The results show that the lowest output average efficiencies of solar modules occurs at 15o horizontally inclined angle are 7.4% , 6.7% , 8.0% , 8.1%, and 8.4% for the cor
... Show More
The purpose of this research is to improve the organizational performance of the Oil Projects Company by adopting an approach to strategic change، and finding appropriate solutions to the problems facing the company. The researcher adopted in designing his research by conducting a survey of previous literature that dealt with approaches to strategic change، as the results of the survey showed that most researchers agree on the approach of renewal and modernization، Which formed a starting point for the researcher to identify the extent of the company's management interest in renewal and modernization to improve its level of performance، and the quality of the procedures followed on the ground that is related to
... Show MoreAbstract : A research was conducted to study the process parameters affecting hexavalent chromium Cr (VI) (carcinogenic compound) the removal percentage from the electrical industries company waste water that contain 88 mg/l of Cr (VI) concentration by adsorption onto tea wastes. Synthetic water with 88 mg/l Cr (VI) concentration was used. Several operation parameters affecting Cr (VI) removal efficiency were investigated, such as pH, initial Cr (VI) concentration, stirring time and tea wastes dose. The experimental results reveal that maximum Cr (VI) removal reached up to 94.26% at pH of 2, stirring time of 180 minute, tea wastes do
... Show MoreIn current study, the dye from flowers petals of Strelitzia reginae used for the first time to prepare natural photosensitizer for DSSC fabrication. Among five different solvents used to extract the natural dye from S. reginae flowers, the ethanol extract of anthocyanin dye revealed higher absorption spectrum of 0.757a.u. at wavelength of 454nm. A major effect of temperature was studied to increase the extraction yield. The results show that the optimal temperature was 70 °C and there was a sharp decrease of dye concentration from 0.827 at temperature of 70 °C to 0.521 at temperature of 90°C. The extract solution of flowers of S. reginae showed higher co
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show MoreThe Isolated Combustion and Diluted Expansion (ICADE) internal combustion engine cycle combines the advantages of constant volume combustion of the Otto cycle with the high compression ratio of the Diesel cycle. This work studies the effect of isolated air mass (charge stratification) on the efficiency of the cycle; the analysis shows that the decrease of isolated air mass will increase the efficiency of the cycle and the large dilution air mass will quench all NOx forming reactions and reduce unburned hydrocarbons. Furthermore, the effect of Fuel / Air ratio on the efficiency shows that the increase of Fuel / Air ratio will increase efficiency of the cycle.
This paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show More