Preferred Language
Articles
/
6xZ1VooBVTCNdQwCmZvn
Experimental and finite element analysis of reinforced concrete multi-cell box girders retrofitted with carbon fiber reinforced polymer strips under torsion
...Show More Authors

This study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From experimental observations, when the girder specimen was cracked and the transverse steel reinforcement bars started straining, the CFRP strips started to work more effectively and contributed together with the transverse steel reinforcement to resist torsion load. Additionally, Finite Element (FE) simulations were developed using Abaqus to model the torsional behavior of the retrofitted girders, the results of which were validated with the experimental data. With the numerical model, the effect of concrete compressive strength, transverse reinforcement spacing, and CFRP strip spacing were examined. The effectiveness of the CFRP strips in enhancing the torsional strength of the girder was found to increase with increasing the spacing between the transverse reinforcement.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Materials Science: Materials In Electronics
Effect of graphene nanoplates and multi-walled carbon nanotubes doping on structural and optical properties of polyvinyl chloride membranes for outdoor applications
...Show More Authors

View Publication
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Study the influence of the reinforced material geometrical shape on the internal stresses in the composite materials
...Show More Authors

In this paper the reinforced materials manufactured from steel continues fibers are used in Aluminum matrix to build a composite material. Most of researches concentrated on reinforced materials and its position in the matrix according to its size and distribution, and their effects on the magnitude of different kinds of the stresses, so this paper presents and concentrate on the geometrical shape of reinforced material and its effects on the internal stresses and strains on the composite strength using FEM as a method for analysis after loaded by certain force showing the deference magnitudes of stresses according to the different geometrical shapes of reinforced materials.

 

View Publication Preview PDF
Publication Date
Tue Oct 18 2022
Journal Name
University Of Baghdad
Experimental Study and Analysis of Matrix Acidizing for Mishrif Formation-Ahdeb Oil Field
...Show More Authors

Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en

... Show More
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Galvanic Corrosion of Carbon Steel -Stainless Steel Couple in Sulfuric Acid under Flow Conditions
...Show More Authors

Galvanic corrosion of stainless steel 316 (SS316) and carbon steel (CS) coupled in 5% wt/v sulfuric acid solution at agitation velocity was investigated. The galvanic behavior of coupled metals was also studied using zero resistance ammeter (ZRA) method. The effects of agitation velocity, temperature, and time on galvanic corrosion current and loss in weight of both metals in both free corrosion and galvanic corrosion were investigated. The trends of open circuit potential (OCP) of each metal and galvanic potential (Eg) of the couple were, also, determined. Results showed that SS316 was cathodic relative to CS in galvanic couple and its OCP was much more positive than that of CS for all investigated ranges of

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
Al-nahrain Journal For Engineering Sciences
Performance Analysis of FSO under Turbulent Channel Using OSTBC
...Show More Authors

Free Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th

... Show More
View Publication
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Synthesis of Carbon Nanotubes Using Modified Hummers Method for Cathode Electrodes in Dye-Sensitized Solar Cell
...Show More Authors

      In this research, carbon nanotubes (CNTs) is prepared  through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Civil Engineering Journal
Calibration of a New Concrete Damage Plasticity Theoretical Model Based on Experimental Parameters
...Show More Authors

The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop

... Show More
Scopus (22)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

     Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha

... Show More
Crossref (3)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental & Theoretical Analysis of Composite (Polyester & Silicon-Carbide) Cantilever Beam
...Show More Authors

A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag

... Show More
View Publication Preview PDF