Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity of the coating layer and calcium-to-phosphate ratio and composition. Results showed that the laser power and scanning speed influenced coating adherence. The cross-sectional field-emission scanning electron microscopy images at low power and high speed showed poor adherence and improved as the laser power increased to 2 kW. Decreasing the scanning speed to 0.2 mm/s at the same power of 2 kW increased adherence. EDX results of the substrate demonstrated that the chemical composition of the coat layer did not change after processing. Moreover, the maps revealed proper distribution of Ca and P with some agglomeration on the surface. The sharp peaks on the X-ray diffraction patterns indicated that β-TCPs in the coat layer were mostly crystalline. The elastic modulus was low at the surface and increased gradually with depth to reach 19 GPa at 200 nm; this value was close to that of bone. The microhardness of the coated substrate increased by about 88%. The laser pulse energy of 8.3 J, pulse peak power of 2 kW, pulse duration of 4.3 min, repetition rate of 10 Hz and scanning speed of 0.2 ms−1 yielded the best results. Conclusion: Both processing and coating have potential use for dental implant applications.
A new, simple, accurate, fast and sensitive spectrophotometric method has been
developed for the analysis of Pyrocatechol, Resorcinol, and pyrogallolin pure
commercial samples by continuous flow injection analysis. The method was based on
the oxidation of the organic compounds with Ce(IV)sulfate in acidic medium to
formed a brown colored species which determined using homemade Ayah 3SBGR x3-
3D solar cell flow injection microphotometer. Optimum conditions were obtained
using a high intensity green light emitted diode as an irradiation source
forPyrocatechol, Resorcinol, whileblue light emitted diode as an irradiation source for
pyrogallol. The linear dynamic range for the instrument response versus Pyrocatechol,
Background: Preparation of platelet-rich fibrin (PRF) is a simple, low cost and minimally invasive method to obtain a natural concentration of autologous growth factors that is widely used to accelerate soft and hard tissue healing, thus, PRF is used in different fields of medicine. The aim of this study was to evaluate the effect of local application PRF on stability of dental implants. Materials and methods: nineteen healthy patients with adequate alveolar bone with two or more adjacent missing teeth and/or bilaterally symmetric to the midline (split-mouth design) missing teeth participated in this study. Each patient received at least two dental implants (Dentium Co., Korea). After surgical preparation of the implant sockets, the PRF was
... Show MoreResearchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreAbstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting poin
... Show MoreA series of 1,3-diarylprop-2-en-1-one oximes (7-12) were synthesized via reaction of 1,3-diarylprop-2-en-1-one (1-6) with NH2OH. HCl in dry pyridine. In order to produce the required products (13-18) as anti-isomers, these products (7–12) were then treated with acetic anhydride in dry pyridine. Different substitutes are maintained, resulting in the separation of different products in different yields The recently produced esters are thought to be useful as building blocks for the synthesis of substituted pyridines and many other nitrogen-holding complexes, which are elaborate structures in medicinal chemistry and present in a variety of pharmaceutical medications. The synthesized products were characteriz
... Show MoreIn this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
Complexes of some metal ions with 2-thiotolylurea were prepared in ethanolic medium using (1:1) (Metal : Ligand) ratio yielded series of neutral complexes as the general formula [M(L)Cl2]. The prepared complexes were identified by atomic absorption FT.IR, UV-Visble spectra, molar conductivity and magnetic properties. From the above data the tetrahedral structure was suggested for all complexes.
Background: Although underdeveloped in Iraq, telehealth was one tool used to continue health service provision during the COVID-19 pandemic. Aim: To assess women’s experiences and satisfaction with gynaecological and obstetric telehealth services in Iraq during the COVID-19 pandemic. Methods: Free telehealth services were provided by 4 obstetrician-gynaecologists associated with private clinics in 2020–2021. All patients who accessed the services between June 2020 and February 2021 were invited to complete a postconsultation survey on their experience and satisfaction with services. Results were analysed using descriptive statistics and logistic regression conducted using SPSS version 25. Results: A total of 151 (30.2%) women re
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
This article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show More