Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity of the coating layer and calcium-to-phosphate ratio and composition. Results showed that the laser power and scanning speed influenced coating adherence. The cross-sectional field-emission scanning electron microscopy images at low power and high speed showed poor adherence and improved as the laser power increased to 2 kW. Decreasing the scanning speed to 0.2 mm/s at the same power of 2 kW increased adherence. EDX results of the substrate demonstrated that the chemical composition of the coat layer did not change after processing. Moreover, the maps revealed proper distribution of Ca and P with some agglomeration on the surface. The sharp peaks on the X-ray diffraction patterns indicated that β-TCPs in the coat layer were mostly crystalline. The elastic modulus was low at the surface and increased gradually with depth to reach 19 GPa at 200 nm; this value was close to that of bone. The microhardness of the coated substrate increased by about 88%. The laser pulse energy of 8.3 J, pulse peak power of 2 kW, pulse duration of 4.3 min, repetition rate of 10 Hz and scanning speed of 0.2 ms−1 yielded the best results. Conclusion: Both processing and coating have potential use for dental implant applications.
Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe purpose of this work was to study the effects of the Nd:YAG laser on exposed dentinal
tubules of human extracted teeth using a scanning electron microscope (SEM). Eighty 2.5mm-thick
slices were cut at the cementoenamel junction from 20 extracted human teeth with an electric saw. A
diamond bur was used to remove the cementum layer to expose the dentinal tubules. Each slice was
sectioned into four equal quadrants and the specimens were randomly divided into four groups (A to D ).
Groups B to D were lased for 2 mins using an Nd:YAG laser at 6 pulses per second at energy outputs of
80 , 100 and 120 mJ. Group A served as control. Under SEM observation, nonlased specimens showed
numerous exposed dentinal tubules. SEM o
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
This work involved the co-substitution of the two bioactive ions of strontium and magnesium into the hydroxyapatite (HA) coating which was then electrochemically deposited on Ti-6Al-4V ELI dental alloy (Gr.23) before and after treatment by Micro Arc Oxidation (MAO). The deposited layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The adhesion strength of the coating layer was estimated by using pull-off adhesion test. The adhesion strength of Sr/Mg-HA on the Ti-6Al-4V ELI dental alloy after MAO treatment was 1.79 MPa, which was higher than that before MAO treatment (1.62 MPa). The corrosion behavior of th
... Show MoreIn this work, the elemental constituents of smoker and nonsmoker
teeth samples of human were analyzed by Laser induced breakdown
spectroscopy method (LIBS). Many elements have been detected in
the healthy teeth samples, the important once are Ca, P, Mg, Fe, Pb
and Na. Many differences were found between (female and male)
teeth in Ca, P, Mg, Na and Pb contents. The concentrations of most
toxic elements were found significantly in the smoker group. The
maximum concentrations of toxic elements such as Pb, Cd and Co
were found in older male age above 60 year. Also, it was found that
the minimum concentrations of trace elements such as Ca, P and Na
exist in this age group. From these results it is clear that the
In this paper, ferric oxide nanoparticles) Fe2O3 NPs( were synthesized directly on a quartz substrate in vacuum by pulse laser deposition technique using Nd:YAG laser at different energies (171, 201,363 mJ/pulse). The slides were then heated to 700o C for 1 hour. The structural, optical, morphological, and electrical properties were studied. The optical properties indicated that the prepared thin films have an energy gap ranging from 2.28 to 2.04 eV. The XRD results showed no lattice impurities for other iron oxide phases, confirming that all particles were transformed into the α-Fe2O3 phase during the heating process. The AFM results indicated the dependence of nanoparticles size o
... Show MoreMost dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreObjective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs, like candesartan cilexetil (CC). CC is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β‑cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β‑cyclodextrin. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were used to study compatibility. Results: The angle of repose determination showed good flow for most of the formulas, besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement sho
... Show More