One of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimental PVT data. The values of the MMPs inputs into the statistical program to find a correlation for the value of miscibility pressure with the properties and composition of the reservoir oil and injected gas. Using a nonlinear formula, a good correlation was obtained. When comparing the present correlation with the many measured data, a superbly result of present correlation was obtained
Gas compressibility factor or z-factor plays an important role in many engineering applications related to oil and gas exploration and production, such as gas production, gas metering, pipeline design, estimation of gas initially in place (GIIP), and ultimate recovery (UR) of gas from a reservoir. There are many z-factor correlations which are either derived from Equation of State or empirically based on certain observation through regression analysis. However, the results of the z-factor obtained from different correlations have high level of variance for the same gas sample under the same pressure and temperature. It is quite challenging to determine the most accurate correlation which provides accurate estimate for a range of pressures,
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreIn the field of research in the investment of gas fields, this requires that we first look at the center of the contracting parties in terms of the guarantee means granted to them under the contract, which constitute a means of safety and motivation to enter as major parties in the investment project. In turn, we will discuss the minimum guarantees, which are the most important guarantees granted to each of the two parties to the contract, namely the national party and the investor.
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show More