A quadruped (four-legged) robot locomotion has the potential ability for using in different applications such as walking over soft and rough terrains and to grantee the mobility and flexibility. In general, quadruped robots have three main periodic gaits: creeping gait, running gait and galloping gait. The main problem of the quadruped robot during walking is the needing to be statically stable for slow gaits such as creeping gait. The statically stable walking as a condition depends on the stability margins that calculated particularly for this gait. In this paper, the creeping gait sequence analysis of each leg step during the swing and fixed phases has been carried out. The calculation of the minimum stability margins depends up
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Background: The vaginal microbial ecosystem stability preclude many other organisms but sometimes the vaginal micro biota is disturbed and this cause change in the normal
balance causing symptoms of vulvuvaginitis like abnormal or increased vaginal discharge, redness and itching.
Objective: To prove C. albicans presence in their vagina clinically and laboratory by culture of vaginal swab on two media.
Type of the study: This study is a case control study
Methods: This study is a case control study in which 100 clinically patient women admitted to maternity hospital in kalar city and khanaqin hospital during the pe
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show More