In medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accurate analysis in the development of pharmaceutically relevant compounds. Sniffer tubes were used to route sample ions into a single quadrupole MS, with each acquisition lasting for 1 minute. Without any prior preparation, samples of ibuprofen tablets were directly exposed to PADI plasma for one minute at an atmosphere pressure. The approach is rapid, easy to use, and needs little to no sample preparation. In this study, the settings were improved by optimization of several parameters, such as plasma power, plasma-to-sample distance, and inner/outer flows of helium carrier gas, which were found to be 8 W, 2 mm, and 284 mL/min, respectively. The PADI-MS method provides a real-time information about structural features on the compounds. Ibuprofen tablets were used as a paradigm for pharmaceutically significant materials and direct PADI-MS analysis without a preliminary sample -treatment appeared to be successful: according to PADI-MS data a medication can be examined after one minute of plasma exposure.
In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreA hybrid particulate swarm optimization (hybrid) combination of an optimization algorithm of the particle swarm and a variable neighborhood search algorithm is proposed for the multi-objective permutation flow shop scheduling problem (PFSP) with the smallest cumulative completion time and the smallest total flow time. Algorithm for hybrid particulate swarm optimization (HPSO) is applied to maintain a fair combination of centralized search with decentralized search. The Nawaz-Enscore-Ham )NEH) heuristic algorithm in this hybrid algorithm is used to initialize populations in order to improve the efficiency of the initial solution. The method design is based on ascending order (ranked-order-value, ROV), applying the continuous PSO algorithm
... Show MorePassive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreIn this study, different oil fields in Mesopotamian basin, southern Iraq (Siba, Zubair, Nahr - Umr, Majnoon, Halfaya, Kumait, and Amara) were selected for studying burial history. PetroMod software 1D was used for basin constructing and to evaluate burial history of the basin. Results showed that in the upper Jurassic to the Recent, Mesopotamian Basin exhibited a complex subsidence history over a period of about 152 Ma.There are different periods of subsidence: high, moderate, and slow. High subsidence occurred at upper Jurassic- mid Cretaceous and at Miocene due to Tectonic subsidence. Slow subsidence occurred at upper Cretaceous and moderate subsidence at Paleogene. In the upper Jurassic, rapid subsidence is driven under the effect of
... Show MoreThe aim of this paper is to construct the analysis mathematical model for stream cipher cryptosystems in order to be cryptanalysis using the cryptanalysis tools based on plaintext attack (or part from it) or ciphertext only attack, choosing Brüer generator as study case of nonlinear stream cipher system.
The constructing process includes constructing the linear (or non-linear) equations system of the attacked nonlinear generator. The attacking of stream cipher cryptosystem means solving the equations system and that means finding the initial key values for each combined LFSR.
The characteristics of atmospheric-pressure glow discharge (APGD) produced by rod-plate electrodes are experimentally determined. APGD is sustained by applying a high DC voltage between the electrodes. At atmospheric pressure, the shift from corona discharge to glow discharge is investigated. A rod-plate discharges configuration's volt–ampere properties show the existence of three discharge regimes: corona, glow, and spark. The variations in the electrical field distribution in the various regimes are mirrored in the discharge luminosity. The rod-plate patterns are created under a dark region, and are visible mainly due to the effect of electrons heated by the local enhanced electric field at the interface, according to the op
... Show More