Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C and 3 hr. The characterization tests revealed a crystalline phase of CaO, a specific surface area 12.5m2/gm and good distribution of the active component. The effects of different transesterification reaction variables on the catalyst performance were also investigated. The highest conversion, 96.11% was obtained at 30:1 methanol-to-waste cooking oil molar ratio, 65°C, 3 wt. % catalyst loading and 3 hr reaction time. Additionally, durability of CaO was examined. It was found that high activity and durability were obtained by washing with n-hexan. It found that the use of eggshell as a heterogeneous catalyst for biodiesel production provides a cost-effective and environmentally friendly way of green fuel production.
The present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreAlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
Industrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreThis work was conducted to study the recovery of catalyst and desirable components from tar formed in phenol production unit and more particularly relates to such a method whereby better recovery of copper salts, phenol, benzoic acid and benzoate salts from tar by aqueous acid solution was accomplished.
The effect of solvent type, solvent concentration (5, 10, 15, 20, 25 and 30 wt%), agitation speed (100, 200, 300 and 400 rpm), agitation time (5, 10, 15, 20 and 25 min), temperature (90, 100, 110, 120, 130 and 140 oC) , phase ratio (1/1, 2/1, 3/1, 4/1 and 5/1) and number of extraction (1, 2, 3, 4, and 5) were examined in order to increase the catalyst and desirable components extraction.
Four types of solvent were used; hydrochloric
The aim of this study was to use low cost adsorbents, which consist of corn cobs as plant wastes adsorbents in treatment of Industrial waste water by fixed bed column technique and study the effect of two variables (pH value and contact time). The sample of plant waste (Corn cobs) was tested to determine its activity which gives the best performance in heavy metals removal and other pollutants (TSS, TDS and COD). Adsorption tests showed the corn cobs adsorbents had significant heavy metal removal efficiency. The best removal efficiency 95.05% of Cr was occurred at pH 5.4 and 4.18hr. Higher removal efficiency 99.90% of Ni was occurred at pH 6.5 and 2.38hr. While, lower removal efficiency 91.35% for Zn obtained at pH 6.5 and 0.15hr. Remova
... Show MoreThe current study was designed for using banana peels to remove zinc, chromium and nickel from industrial waste-water. Three forms of these peels (fresh, dried small pieces and powder) were tested under some environmental factors such as pH, temperature and contact time. Current data show that banana peels are capable of removing zinc, chromium and nickel ions at significant capacity. Furthermore, the powder of banana peels had highest capability in removing all zinc, chromium and nickel ions followed by fresh peels whilst dried peels had the lowest bioremoving capacity again for all metals under test. The highest capacity was for chromium then nickel and finally zinc. All these data were significantly (LSD peel forms = 2.761 mg/l, LSD m
... Show MoreThe aim of this study was to use low cost adsorbents, which consists of plant wastes in treatment of Industrial waste water by fixed bed column technique and study the effect of to two variables (pH value and contact time) on adsorption process. The sample of plant waste (Rice husk) was tested to determine its activity which gives the best performance in heavy metals removal and other pollutants (TSS, TDS and COD). Adsorption tests showed all tested plant adsorbents had significant heavy metal removal efficiency. The best removal efficiency 96.56% of Cr was occurred at pH 6.5 and 5hrs. Higher removal efficiency 99.02% of Ni was occurred at pH 6.5 and 0.15hr. While, lower removal efficiency 94% for Zn obtained at pH 5 and 2.83hrs. Removal
... Show MoreIn the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtain
... Show More