Preferred Language
Articles
/
6BdKWZABVTCNdQwCAodc
Optimizing Application of UAV-Based SfM Photogrammetric 3D Mapping in Urban Areas
...Show More Authors

In recent years, the extensive need for high-quality acquisition platforms for various 3D mapping applications has rapidly increased, especially in sensor performance, portability, and low cost. Image-based UAV sensors have overwhelming merits over alternative solutions for their high timeline and resilience data acquisition systems and the high-resolution spatial data they can provide through extensive Computer Vision (CV) data processing approaches. However, applying this technique, including the appropriate selection of flight mission and image acquisition parameters, ground settings and targeting, and Structure from Motion- Multi-View Stereo (SfM-MVS) post-processing, must be optimized to the type of study site and feature characteristics. This research focuses on optimizing the application of UAV-SfM photogrammetry in an urban area on the east bank of the Tigris River in the north region of Iraq following optimized data capturing plan and SfM-MVS photogrammetric workflow. The research presented the practical application of optimized flight planning, data acquisition, image processing, accuracy analysis, and evaluation based on ground truth targets designed for the proposed optimal routine. This includes investigating the influence of the number and distribution of GCPs, flying heights, and processing parameters on the quality of the produced 3D data. The research showed the potential of low-budget and affordable UAV devices to deliver robust 3D products in a relatively short period by demonstrating the value of UAV-based image techniques when contributed to CV algorithms. The results showed powerful outcomes with validation errors reaching a centimeter-level from 100 m flying height when applying the optimized flight plan settings and the appropriate selection of the number and distribution of GCPs. The study established a streamlined UAV mapping procedure, demonstrated the viability of UAV use for 3D mapping applications, offered suggestions for enhancing future applications, and offered clues as to whether or not UAVs could serve as a viable alternative to conventional ground-based surveying techniques in accurate applications.

Scopus Crossref
View Publication
Publication Date
Tue Dec 01 2020
Journal Name
Ieee Transactions On Industrial Electronics
Cascaded-Extended-State-Observer-Based Sliding-Mode Control for Underactuated Flexible Joint Robot
...Show More Authors

This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th

... Show More
View Publication
Scopus (136)
Crossref (129)
Scopus Clarivate Crossref
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Composites Science
Sawdust-Based Concrete Composite-Filled Steel Tube Beams: An Experimental and Analytical Investigation
...Show More Authors

Incorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co

... Show More
View Publication
Scopus (5)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jul 06 2024
Journal Name
Multimedia Tools And Applications
Text classification based on optimization feature selection methods: a review and future directions
...Show More Authors

A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (4)
Scopus Crossref
Publication Date
Wed Mar 31 2021
Journal Name
Electronics
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A

... Show More
View Publication
Scopus (37)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Sun Jun 27 2021
Journal Name
Iraqi National Journal Of Nursing Specialties
Evaluation of Quality of Nursing Care Services Provided to Children under Five Years Based on Integrated Management of Child Health at Primary Health Care Centers in Baquba City
...Show More Authors

Objective(s): The study aims to evaluating the quality of nursing care provided to children under five years to compare between quality related to type of health sectors; to determine the quality of nursing care and to compare between such care in Baquba Health Care Sector I and II.

Methodology: A descriptive study is carried out for the period from December 15th 2019 to May 1st 2020. A purposive "non- probability" sample, of (60) staff nurse and (60) children is selected. An adopted questionnaire has been selected for the study which consists of three parts. The first part is nurses’ socio-demographic characteristic; the second part is ch

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 03 2018
Journal Name
Chinese Journal Of Physics
A true random number generator based on the photon arrival time registered in a coincidence window between two single-photon counting modules
...Show More Authors

True random number generators are essential components for communications to be conconfidentially secured. In this paper a new method is proposed to generate random sequences of numbers based on the difference of the arrival times of photons detected in a coincidence window between two single-photon counting modules

View Publication
Scopus (19)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Energy
Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids
...Show More Authors

View Publication
Scopus (137)
Crossref (133)
Scopus Clarivate Crossref