Porosity and permeability are the most difficult properties to determine in subsurface reservoir characterization. The difficulty of estimating them arising from the fact that porosity and permeability may vary significantly over the reservoir volume, and can only be sampled at well location. Secondly, the porosity values are commonly evaluated from the well log data, which are usually available from most wells in the reservoir, but permeability values, which are generally determined from core analysis, are not usually available. The aim of this study is: First, to develop correlations between the core and the well log data which can be used to estimate permeability in uncored wells, these correlations enable to estimate reservoir permeability at the "flow unit" scale. Second, generate spatial distributions of reservoir properties (porosity and permeability). These distributions of reservoir properties are the basis for a geological model that can be used to perform reservoir modeling and reservoir management tasks. The Alternating Conditional Expectation (ACE) technique has been used and tested in this study. ACE is classified as non-parametric method against the parametric methods which are represented by the traditional multiple regression. A comparison between these two methods shows the superiority of the ACE method correlations for four wells in an Iraqi oil field. General correlations for unit (a) and (b) are also presented. These correlations can be used to estimate permeability in uncored wells with a good approximation
This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close
... Show MoreStatic reservoir modeling is the interacting and analysis of the geological data to visualize the reservoir framework by three-dimensional model and distribute the static reservoir properties. The Petrel E&P software used to incorporate the data. The interpreted log data and core report used in distribution of petrophysical properties of porosity, water saturation and permeability for Zubair reservoir in Luhais oil field.
The reservoir discretized to 274968 cells in increments of 300, 200 and 1 meter in the direction of X, Y, and Z respectively. The geostatistical approach used in the distribution of the properties of porosity and water saturation overall the reservoir units. The permeability has been calculated
... Show MoreAt the temperature 298.15 K, some physical properties such as: refractive indices (nD), viscosities (η) and densities (ρ) were studied in four liquid-liquid mixtures: carboxylic acids (HCOOH, CH3COOH, CH3CH2COOH and CH3CH2CH2COOH) with tetrahydrofurfuryl alcohol (THFA) with the identified configuration set. These empirical data were utilized to estimate the excess molar volumes (Vm E), refractive index perversions (ΔR), viscosity deviations (ηE) and excess molar Gibbs free energy (ΔG*E). Values of Vm E, ηE , ΔG*E and ΔR were plotted versus mole fraction of tetrahydrofurfuryl alcohol. In all cases, the values of Vm E, ηE , ΔG*E and ΔR that obtained in this study were found to be negative at 298.15 K. The excess parameters
... Show MoreOne of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreIn this research a study process to calculate the factor accumulation of gamma rays for aluminum and exporters cobalt 60 Mika Atktron volts and actively radiation Vdrh 1.406 Mika Bq been studying the effect of the angle of reimbursement and the distance between the shield and detector In measurements factor accumulation Adhrt results in line with the theoretical results published
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreShiranish formation has been divided into two microfacies units: 1 - Many biowackestone facies and 2 - maly packstone using planktonic foraminifera and other carbonate components in the rock cutting and core slides. Microfacies reflect marin deep shelf margin in the lower part of the formation, the upper part was deeper. The thickness of the formation is determined, depending on addition to the presence of echinoderm framents debris and spines. This is in disagreement with the 195 ft thickness reported by the Oil Exploration Company The age of the formation is estimated depending on the recognized biostratigraphic zone using the index fossils to be Upper - Middle Mastrichtion.