This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MoreThe green method was chosen for the preparation of nano iron oxide due to its simplicity, ease of preparation, and purity, compared to other methods. Nano iron oxide was made using a substance that causes precipitation and a coating from the alcoholic extract of orange leaves from Iraq. It was examined structurally and spectrally using several techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning microscopy (FESEM), energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The diagnosis proved that the nano iron oxide was successfully prepared in a spherical form and with an average size of 71.1 nm. The nano iron oxide particles were tested for their ability to remove crystal
... Show MoreEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreZinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show MoreIn the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreIn this study, silver nanoparticles (AgNPs) were synthesized using a cold plasma technique and a plasma jet. They were then used to explore how photothermal treatment may be used to treat lung cancer (A549) and normal cells (REF) <i>in vitro</i>. The anti-proliferative activity of these nanoparticles was studied after A549 cells were treated with (AgNPs) at various concentrations (100%, 50%, or 25%) and exposure times (6 or 8 min) of laser after 1 h or 24 h from exposed AgNPs. The highest growth inhibition for cancer cells is (75%) at (AgNPs) concentration (100%) and the period of exposure to the laser is (8 min). Particle size for the prepared samples varied according to the diameter o
... Show MoreIn this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffra
... Show MoreIn recent years, there has been growing interest in using Nanosystems in different biomedical applications. Among all metal nanoparticles, selenium nanoparticles have attracted the attention of many researchers due to its low toxicity and nutritional supplementation value. The purpose of the current study was designed to examine the possible effect of selenium nanoparticles in combination with fenugreek leaves extract (an edible herb with good medicinal properties) in the treatment of oxidative stress status-related to polycystic ovary syndrome in letrozole-induced PCOS (an imbalance of reproductive hormones that causes infertility) in adult female rats. Cold plasma was used in the preparation of selenium nanoparticles subsequently the prod
... Show More