The present study devoted to determine the ultimate lateral carrying capacity of piles foundation in contaminated clayey soils and subjected to lateral cyclical loading. Two methods have been used to calculate the lateral carrying capacity of piles foundation; the first one is two-line slopes intersection method (TLSI) and the second method is a modified model of soil degradation. The model proposed by Heerama and then developed by Smith has been modified to take into consideration the effects of heavy loads and soil contamination. The ultimate lateral carrying capacity of single pile and piles group (2×2) driven into samples of contaminated clayey soils have been calculated by using the two methods. Clayey soil samples are contaminated with four percentages of industrial wastewater (10, 20, 40 and 100) % of the distilled water used in the soaking process, the soaking procedure of soil samples have been proceeded for 30 days. Also, two ratios of eccentricity to embedded length (e/L = 0.25 and 0.5) have been examined. The results obtained from two analytical methods are well agreed with those obtained experimentally. The ultimate lateral carrying capacity, Pu (analytical) /Pu (experimentally) ranged from (75-8) % and (77-80) % of single pile with e/L = 0.25 and 0.5 respectively. In the piles group the ratio ranged (67-80) % and (71-79) % for e/L = 0.25 and 0.5 respectively.
A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading cap
... Show MoreIn the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreThe idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending
... Show MoreThe issues related to the development of permafrost and seasonally frozen soils without their preliminary loosening by various earthmoving machines with active working bodies, magnetostrictive vibrators, that soften dense and frozen soils using acoustic elastic waves, are considered. The analytical studies allowed us to establish the regularities of the process of destruction of frozen soil by active teeth of bucket working bodies, according to which, the formulas for calculating the critical tensile stress and shear resistance were obtained. The research results allow us to determine the main parameters of wave loading for both a single radiation source and a group of "n" in-phase radiation sources. The intensity of the acoustic
... Show MoreAs a result of the growth of economic, demographic and building activities in Iraq, that necessitates carrying out geotechnical investigations for the dune sand to study behavior of footings resting on these soils. To determine these properties and to assess the suitability of these materials for resting shallow foundation on it, an extensive laboratory testing program was carried out. Chemical tests were carried out to evaluate any possible effects of the mineralogical composition of the soil on behavior of foundation rested on dune sands.
Collapse tests were also conducted to trace any collapse potential. Loading tests were carried out for optimum water content and different shapes of footing. Loading test recommends manufacturing o
In this study, lateral groundwater inflow was examined, according to the phenomena of groundwater mixing, groundwater flow and groundwater chemistry. The study region is composed of different aquifer systems; including karst-fracture media (Rattga-Jeed carbonates aquifer), fissure–porous media (Mullusi, Mullusi-Ubaid, Hartha-Rutba, and Digma-Tayarat aquifers) and porous media (Permo-carboniferous clastics rocks of Ga’ra aquifer).The aquifers are vertically super-imposed or of lateral contacts make open hydraulic connection between aquifers system. There is a severe shortage of water resources in the region because of rare precipitation and strong evapotranspiration. These conditions have hampered eco-environm
... Show MoreThis paper deals with studying the effect of hole inclination angle on computing slip velocity and consequently its effect on lifting capacity. The study concentrates on selected vertical wells in Rumaila field, Southern Iraq. Different methods were used to calculate lifting capacity. Lifting capacity is the most important factor for successful drilling and which reflex on preventing hole problems and reduces drilling costs. Many factors affect computing lifting capacity, so hence the effect of hole inclination angle on lifting capacity will be shown in this study. A statistical approach was used to study the lifting capacity values which deal with the effect of hole
... Show More