The durability of asphalt pavement is associated with the properties and performance of the binder. This work-study intended to understand the impact of blending Styrene-Butadiene-Styrene (SBS) to conventional asphalt concrete mixtures and calculating the Optimum Asphalt Content (OAC) for conventional mixture also; compare the performance between SBS modified with the conventional mixture. Two different kinds of asphalt penetration grades, A.C. (40-50) and A.C. (60-70), were improved with 2.5 and 3.5% SBS polymer, respectively. Marshall properties were determined in this work. Optimum Asphalt Content (OAC) was 4.93 and 5.1% by weight of mixture for A.C. (40-50) and (60-70), respectively. Marshall properties results show an increasement in the stability value by 8.65 and 20.19% for A.C. (40-50) with 2.5 and 3.5% of SBS, respectively. And an increasement by 9.32 and 20.61% for AC (60-70) with 2.5 and 3.5% of SBS respectively. Furthermore, the results indicate a decrease in Marshall flow by 14.7 and 26.47% for A.C. (40-50) with 2.5 and 3.5% SBS respectively and a decrease by 10.46 and 21.21% for A.C. (60-70) with 2.5 and 3.5% SBS respectively. Other Marshall properties were also calculated. Moreover, Blending SBS polymers to conventional asphalt mixtures produces a better performance to asphalt binder and better Marshall properties, which provides a great solution to Iraqi road problems affected by temperature and high traffic load, including less maintenance. Doi: 10.28991/cej-2021-03091709 Full Text: PDF
The global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap
... Show MoreThe research deals with a new type of high-performance concrete with improved physical properties, which was prepared by using metal additives minutes (Metakaolin) and by studing their impact on the properties of mortar and concrete high-performance through destructive and non destructive tests. This type of concrete is used broadly in public buildings and in other structures . The research involved a number of experiments such as finding the activity index of burned at a temperature of 750 º C according to the standard ( ASTM C-311/03), as well as casting models for the cubic mortar mixtures and concrete containers at different rates of metakaolin ranging between (5% - 20%) as an added part to the cement mix to get a high- compressive
... Show MoreThis work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show MoreFrequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susc
... Show MoreIn this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreNanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly
... Show MoreThis paper examines the mechanical properties of a composite material made of modified Iraqi gypsum (juss) reinforced with polypropylene fibers. The modified juss was prepared by adding two percentages of cement (5, 10) %. Two percentages of polypropylene fibers were used, to reinforce the modified juss (1, 2) %. The water/dry compound ratio used was equal to 0.53%. The composite was evaluated based on compressive strength, flexural strengths, absorption percentage, density, acoustic impedance, ultra - pulse velocity, longitudinal shrinkage and setting time tests. The results indicated that the inclusion of cement on to juss increases the compressive strength, absorption percentage, density, acoustic impedance, ultra - pulse velocit
... Show MoreChina is moving towards building the largest economic power in the world, so what does this mean economically and politically for Europe, America, the Middle East and the Arab world? This project is called the expansionist Chinese Marshall Plan which is a revival of the old Silk Road in a new way. It represents the aspirations of the Chinese people and their president, Xi Jinping, to build a transport route from Asia to Europe and a railway plan to transport goods. The purpose of this is to develop the economic growth model, expand into new markets, promote the Chinese currency, and expand economic and political influence in the areas covered by the Chinese initiative. Equal opportunities in distributing investments to these countries, a
... Show More