Static loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piezoelectric materials used to repair effect of crack on the mechanical behaviour of beam subjected to static loads is analytically achieved. This design includes calculating of desired dimensions of the material with the required voltage applied on it. The additional flexibility is expressed in term of a proposed unitless factor which can be calculated depend on experimental work. The results show that increasing the patch thickness increases the beam resistance to crack and load effects, while increasing the length of the piezoelectric material reduces the magnitude of the voltage required to repair the cracked beam.
A piezoelectric cantilever beam with a tip mass at its free end is a common energy harvester configuration. This article introduces a new principle of designing such a harvester that increases the generated power without changing the resonance frequency of the harvester: the attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the efficient operation frequency. Five set-ups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle: theoretical and experimental results show that magnetically stiffened harve
... Show MoreThe work reported in this study focusing on the abrasive wear behavior for three types of pipes used in oil industries (Carbone steel, Alloy steel and Stainless steel) using a wear apparatus for dry and wet tests, manufactured according to ASTM G65. Silica sand with
hardness (1000-1100) HV was used as abrasive material. The abrasive wear of these pipes has been measured experimentally by measuring the wear rate for each case under different sliding speeds, applied loads, and sand conditions (dry or wet). All tests have been conducted using sand of particle size (200-425) µm, ambient temperature of 34.5 °C and humidity 22% (Lab conditions).
The results show that the material loss due to abrasive wear increased monotonically with
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show MoreOriganum majorana (Majorana hortensis), an evergreen herbaceous plant belonging to the Lamiaceae family, has been well known for being used for gastrointestinal, cardiac, respiratory, rheumatologic and many other illnesses, but in wounds management hasn’t been qualified scientifically yet. The goal of the study was to evaluate the wound healing properties of sterols in n-hexane and phenols in ethyl acetate extract fractions of the Iraqi Origanum majorana L aerial parts by contrasting their wound healing abilities with those of commercially available MEBO ointment in a rat excised wound repair model. At various periods, the size of the wounds was measured and skin tissue samples were taken for histopathology. When compared to positive and
... Show MoreIn this paper, wireless network is planned; the network is predicated on the IEEE 802.16e standardization by WIMAX. The targets of this paper are coverage maximizing, service and low operational fees. WIMAX is planning through three approaches. In approach one; the WIMAX network coverage is major for extension of cell coverage, the best sites (with Band Width (BW) of 5MHz, 20MHZ per sector and four sectors per each cell). In approach two, Interference analysis in CNIR mode. In approach three of the planning, Quality of Services (QoS) is tested and evaluated. ATDI ICS software (Interference Cancellation System) using to perform styling. it shows results in planning area covered 90.49% of the Baghdad City and used 1000 mob
... Show MoreEnd of the twentieth century witnessed by the technological evolution Convergences between the visual arts aesthetic value and objective representation of the image in the composition of the design of the fabric of new insights and unconventional potential in atypical employment. It is through access to the designs of modern fabrics that address the employment picture footage included several scenes footage from the film, which focuses on research and analytical as a study to demonstrate the elements of the picture and the organization of its rules and how to functioning in the design of fabrics, Thus, it has identified the problem by asking the following: What are the elements of the picture footage and how the functioning of the struct
... Show MoreThis research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively
Evaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduc
... Show MoreIn this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0
This study presents the findings of a 3D finite element modeling on the performance of a single pile under various slenderness ratios (25, 50, 75, 100). These percentages were assigned to cover the most commonly configuration used in such kind of piles. The effect of the soil condition (dry and saturated) on the pile response was also investigated. The pile was modeled as a linear elastic, the surrounded dry soil layers were simulated by adopting a modified Mohr-Coulomb model, and the saturated soil layers were simulated by the modified UBCSAND model. The soil-pile interaction was represented by interface elements with a reduction factor (R) of 0.6 in the loose sand layer and 0.7 in t