The behavior corrosion inhibition of aluminum alloy (Al6061) in acidic (0.1 M HCl) and saline (3.5% NaCl) solutions was investigated in the absence and the presence of expired diclofenac sodium drug (DSD) as a corrosion inhibitor. The influence of temperature and was studied using electrochemical techniques. In addition, scanning electron microscopy (SEM) was used to study the surface morphology. The results showed that DSD acted as a powerful inhibitor in acidic solutions, while a moderate influence was observed with saline one. Maximum inhibition efficiency was 99.99 and 83.32% in acidic and saline solutions at 150 ppm of DSD, respectively. Corrosion current density that obtained using electrochemical technique was increased with temperature and decreased with the addition of DSD in both, acidic and saline solutions. DSD acted as a mixed-type corrosion inhibitor in acidic solution, while it affected the cathodic reaction in saline solution. Scanning electron microscopy (SEM) showed a significant surface damages in the absence of DSD. Quantum chemical theoretical studies were also addressed. Three states of DSD were considered in understanding the mechanism of inhibition. Normal, dissociated, and protonated states were optimized using Density Function Theory (DFT). Highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap (ΔE), dipole moment (µ), and other parameters were used to compare the performance of DSD states. Theoretical studies showed that the protonated state gave higher protection efficiency.
A biological experirne.rit was CQhducted ·ll1 the (Ibn- AlÂ
Haitham). University of Baghdad for growing seasens on of
2004/2005 (by using gypsum soil taken from Al- Doar area I Salah Al Dean provinc) to stucl·- the effect three levels of phosphorus (0, 400,
SOO)rng ! pot and four levels of zinc (0, 10,.. J 5, 2.0) tngf I pot on some
features of two varieties -Qf wheat, (triticum aestivurn var. rateh)and
(Triticum aestiv1lm Var. Ipa 99)..
R't
... Show MoreThe aim of this work is to study the histological and histochemical structure of the Harderian gland in indigenous pigeons. Samples were obtained from 10 males and 10 females of adult healthy pigeons. Hematoxylin and eosin, Alcian blue (pH 2.5), periodic acid-Schiff and promo phenol blue, stains were used for paraffin section examination. The gland was teardrop like in shape, light brown to pink in color, capsulated with thin connective tissue. It was multilobular compound acinotubular in structure and lined by columnar epithelial cells. Lymphocyte, plasma cells and plasma cells with Russell bodies were present underneath the epithelia of central collecting duct and around the secretory unite. Histochemically; the
... Show MoreImproved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreCams are considered as one of the most important mechanical components that depends the contact action to do its job and suffer a lot of with drawbacks to be predicted and overcame in the design process. this work aims to investigate the induced cam contact and the maximum shear stress energy or (von misses) stresses during the course of action analytically using Hertz contact stress equation and the principal stress formulations to find the maximum stress value and its position beneath the contacting surfaces. The experimental investigation adopted two dimensions photoelastic technique to analyze cam stresses under a plane polarized light. The problem has been numerically simulated using Ansys software version 15 as FE
... Show MoreThis research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La: Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec
... Show MoreThis research includes a study of dezincification by corrosion from brass alloys in three types of media, which are acidic solution, basic and slat solution in different percentages. The study show the higher dezincification occurs in basic solution which decrease the fatigue properties where the fatigue properties are inversely proportional with dezincification.
An experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show More