Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data communication processes with sink node. As such, failure in communicating nodes would lead to a significant network void-holes problem. Considering the limited energy resources of nodes in UWSNs along with the heavy load of CHs in the routing process, this paper proposes a void-holes aware and reliable data forwarding strategy (VHARD-FS) in a proactive mode to control data packets delivery from CH nodes to the sink in UWSNs. In the proposed strategy, each CH node is aware of its neighbor’s performance ranking index to conduct a reliable packet transmission to the sink via the most energy-efficient route. Extensive simulation results indicate that the VHARD-FS outperforms existing routing approaches while comparing energy efficiency and network throughput. This study helps to effectively alleviate the resource limitations associated with UWSNs by extending network life and increasing service availability even in a harsh underwater environment.
This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreFlying Ad hoc Networks (FANETs) has developed as an innovative technology for access places without permanent infrastructure. This emerging form of networking is construct of flying nodes known as unmanned aerial vehicles (UAVs) that fly at a fast rate of speed, causing frequent changes in the network topology and connection failures. As a result, there is no dedicated FANET routing protocol that enables effective communication between these devices. The purpose of this paper is to evaluate the performance of the category of topology-based routing protocols in the FANET. In a surveillance system involving video traffic, four routing protocols with varying routing mechanisms were examined. Additionally, simulation experiments conduct
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreAbstract
The research aims to determine the impact of the strategy performance evaluation and of the Standards (leadership, people, knowledge, processes, financial) in the achievement of organizational effectiveness in accordance with the dimensions (planning and setting goals, Exploitation of the Environment, achieve the goals, the ability to adapt, information management and communications) and the relationship between them, the problem of the research in the growing interest in the process of performance evaluation for organizations, the erroneous belief that the performance evaluation activity is useful, and the fact that performance evaluation process is one of the main tasks of the work of the Office of the Inspecto
... Show MoreABSTRACT The importance and objectives of the study were an attempt to understand the methodology of disseminating radical thought and the reasons of social acceptability that make young people embrace this thought. It also sheds light on the impact of this phenomenon on the regional role of Egypt and examines the strategic means and standards that the Egyptian state focuses on in immunization and prevention of extremism.
Shear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreEvaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed
... Show MoreIn this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.