This paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.
This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ, in special cases.
Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou
... Show MoreExperimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2
In this ˑwork, we present theˑ notion of the ˑgraph for a KU-semigroup as theˑundirected simple graphˑ with the vertices are the elementsˑ of and weˑˑstudy the ˑgraph ofˑ equivalence classesˑofˑ which is determinedˑ by theˑ definition equivalenceˑ relation ofˑ these verticesˑ, andˑ then some related ˑproperties areˑ given. Several examples are presented and some theorems are proved. Byˑ usingˑ the definitionˑ ofˑ isomorphicˑ graph, ˑwe showˑ thatˑ the graphˑ of equivalence ˑclasses ˑand the ˑgraphˑof ˑa KU-semigroup ˑ areˑ theˑ sameˑ,
... Show MoreJoint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d
Steady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid
... Show More