Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning models for a variety of tasks under the control of a unified architecture for each proposed model.
Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreThe internal observing system is considered a cornerstone for the high management in all the systems. It aims at defending the things for waste and increasing efficient and application the rules and regulations and constrictions. To easier for the high management activity in the internal observing system which in presented and practiced and to what extent can depend on it. Thus it goes to evaluate the internal observing system periodically to check the weak points in that system so as the find out the mistake, in the construction of the system or mistake, by indication of the workers. The importance of this study is represented in the need of increasing the coactivity in the internal observing system so as to be in touch with the new tre
... Show MoreThis article examines and proposes a dietary chain model with a prey shelter and alternative food sources. It is anticipated that mid-predators' availability is positively correlated with the number of refuges. The solution's existence and exclusivity are examined. It is established that the solution is bounded. It is explored whether all potential equilibrium points exist and are locally stable. The Lyapunov approach is used to investigate the equilibrium points' worldwide stability. Utilizing a Sotomayor theorem application, local bifurcation is studied. Numerical simulation is used to better comprehend the dynamics of the model and define the control set of parameters.
This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t
... Show MoreAn experiment was conducted to study the effect of the sprayer type according to the source of power and the size of the spray nozzle concerning the quality of the spray produced and fuel consumption.Two types of sprayers were used: a conventional boom sprayer (S1) and a modified (electrified) boom sprayer (S2), along with three sizes of the XR TeeJet 110 spray nozzle (N). The following technical performance indicators were examined: Density of coverage (drops/cm2) using ImageJ software, a 600dpi business card scanner, specifically the ScanShell 800N by CSSN, Inc, and water-sensitive paper (WSP), rate of spray nozzles discharge (ml/min), and fuel consumption (liters/hectare) using a c
This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show More