Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning models for a variety of tasks under the control of a unified architecture for each proposed model.
This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreMost species of Mollusca lives in salts water, on the shores of seas and lakes and some in fresh water, others are found in deserts, forests and forms and there are 45,000 species . They are invertebrate animals with lateral symmetry, slow-moving and a few of them are fast, like Octopus and Squid and some of them are economic importance. The class Gastropoda are considered the largest class belonging to the Phylum-Mollusca, as it contains more than 80%. Its importance follows from its great diversity and spread in all environments. It has an ecological importance because it plays an great role in ecosystems due to the diversity of its food methods between herbivorous and predatory. Studies on snails in Iraq are very few and modest. Hence
... Show MoreThe aim of this study was to assess the nutritional status for samples at the age of 17-15 years. These samples were taken from secondary schools and universities in Baghdad area, 123 of them were male and 261 were female. Data on weight, height and body mass index (BMI) were determined in each individual. Smaller sample of 215 individuals (male and female) from the original sample was taken in order to record their nutritional behavior and daily food intake during the 24 hours prior to the visit through personal meeting using special questionnaire. The results showed that the weight and the height were within the range of the people of neighboring Arab countries, who are in the same age. Beside 44.4- 55.95% of these samples were within t
... Show MoreIn many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.
To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.
Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.
In this study a number of em
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show MoreThe behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreGovernment spending is the tool that the state uses to achieve its various goals. The research aims to identify the most important determinants of government spending in Iraq and to indicate the type and nature of the relationship between government spending and its determinants, which will contribute to understanding the movement of government spending. The results of the co-integration test using the border test methodology showed that the variables of population growth and oil prices have a long-term effect on government spending while inflation is not significant in the long run, and that 47% of the equilibrium imbalance (short-term imbalance) in government spending in the previous period (t-) can be corrected in the current period (t)
... Show More