Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final
... Show MoreThe electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.
The present research aims to know the relation of Violence on academic Failed and School s’ Drop - out among Intermediate stage Pupils. The sample of the research reached (400) male and female pupils (failed and not failed ), and (69) male and female that Drop – out from Intermediate stage. The researcher used scale of Violence that constructed by (AL- qaysi , 2004) after she got Validity and Reliability to it . So that she used t- test for one sample, t- test for two independent sample, and Person correlation coefficient as a statistical means. The research reached to the results that indicates raising of level of Violence among the Intermediate stage pupils (failed and not failed) and the male and female that Drop – out from Inte
... Show MoreIn this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie mod
An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show More