The goal of this discussion is to study the twigged of pure-small (pr-small) sub- moduleof a module W as recirculation of a small sub-module, and we give some basic idiosyncrasy and instances of this kind of sub-module. Also, we give the acquaint of pure radical of a module W (pr-radical) with peculiarities.
This paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
Eight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
YY Lazim, NAB Azizan, 2nd International Conference on Innovation and Entrepreneurship, 2014
Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f ˛ End (M), Imf is pure in M and we give some properties of this kind of modules.
Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.
An -module is extending if every submodule of is essential in a direct summand of . Following Clark, an -module is purely extending if every submodule of is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module is Goldie extending if, for each submodule of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module is purely Goldie extending if, for each , there is a pure submodule P of such that . Many c
... Show MoreLet R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that