Abstract ABSTRACT:BACKGROUND: Anterior cruciate ligament reconstruction (ACLR) is one of the most commonly performed orthopedic procedures. Technical factors especially correct tunnel placement play major role in its success. However its failure rate is still high (10%), and impingement of the graft on the posterior cruciate ligament (PCL) and the medial wall of the lateral femoral condyle is an important cause of failure. Wallplasty is a technique used to prevent graft impingement, but there is no consensus on its routine use.OBJECTIVE:Is to compare between the postoperative knee functional outcome and stability of arthroscopic ACLR performed with wallplasty versus those performed without wallplasty.PATIENTS AND METHODS: A prospective experimental non randomized study was performed on 32 patients (30 males and 2 females) who necessitated arthroscopic ACLR. The patients were divided into 2 groups, in group A (made of 16 patients) the reconstructions were done without wallplasty and in group B (made of 16 patients) were done with wallplasty. Three months postoperatively the two groups were compared in regard to Lasholm score changes (preoperative and postoperative), Lachman test, and Pivot shift test results.RESULTS: There was better improvement in Lasholm score in group B than in group A, and the difference was statistically significant (p value =0.036). Knee stability tests were better in group B than in group A, but the differences were statistically not significant.CONCLUSION: Wallplasty has statistically better functional outcome than non wallplasty in ACLR and it is recommended to be done routinely in all cases of ACLR.
In all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO
Based on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreUltraviolet photodetectors have been widely utilized in several applications, such as advanced communication, ozone sensing, air purification, flame detection, etc. Gallium nitride and its compound semiconductors have been promising candidates in photodetection applications. Unlike polar gallium nitride-based optoelectronics, non-polar gallium nitride-based optoelectronics have gained huge attention due to the piezoelectric and spontaneous polarization effect–induced quantum confined-stark effect being eliminated. In turn, non-polar gallium nitride-based photodetectors portray higher efficiency and faster response compared to the polar growth direction. To date, however, a systematic literature review of non-polar gallium nitride-
... Show More