Objective: To evaluate the functional outcome of percutaneous cross two K wires fixation for Gartland types II and III fractures of humerus. Methodology: This prospective study included80 patients with supracondylar humeral fracture, who underwent closed reduction and fixation by two crossed Kirschner wires. We included children with age < 15 years with closed fractures with Gartland types II and III, while the patient with vascular injury, open, irreducible fractures were excluded. The patients were following up for 6 months and assessed functionally by Flynn’s criteria. Results: The mean age of patients was 8.1 years. Trauma while child playing was the main mechanism of injury in 43 (59.8%) children and 46 (57.5%) fractures were of the type Gartland type III. Union was achieved between 6-8 weeks in all children. The functional outcome showed that 40 (50%) patients had excellent, 24 (30%) good, 16 (20%) fair, and none had a poor result as per Flyn’s Criteria. Conclusion: Percutaneous Kirshner wires fixation results in good functional outcome, short hospital stays and minimal complications
The synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
المستودع الرقمي العراقي. مركز المعلومات الرقمية التابع لمكتبة العتبة العباسية المقدسة
In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two t
... Show More