Preferred Language
Articles
/
4xYFzYcBVTCNdQwC5WEU
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems

Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
Crossref (16)
Crossref
View Publication
Publication Date
Tue Jan 02 2018
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (16)
Crossref
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
Crossref (1)
Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid technique for solving fractional delay variational problems by the shifted Legendre polynomials

This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Boubaker Scaling Operational Matrices for Solving Calculus of Variation Problems

     In this paper, a general expression formula for the Boubaker scaling (BS) operational matrix of the derivative is constructed. Then it is used to study a new parameterization direct technique for treating calculus of the variation problems approximately. The calculus of variation problems describe several important phenomena in mathematical science. The first step in our suggested method is to express the unknown variables in terms of Boubaker scaling basis functions with unknown coefficients. Secondly, the operational matrix of the derivative together with some important properties of the BS are utilized to achieve a non-linear programming problem in terms of the unknown coefficients. Finally, the unknown parameters are obtaine

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

Crossref
View Publication Preview PDF
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Efficient Semi-Analytic Technique for Solving Nonlinear Singular Initial Value Problems

 The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point  osculatory  interpolation.           The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems.             A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Towards Solving Fractional Order Delay Variational Problems Using Euler Polynomial Operational Matrices

     In this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF