Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different process conditions and a reasonable starting point for factors remained constant to study the changing effect of specific factors.
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.
Anodic electrodeposition was used to synthesize a composite electrode of nanostructured manganese dioxide/carbon fiber (CF) galvanostatically. Different characterization results of the nanostructured MnO2 were obtained by varying the H2SO4 concentration and the current density. Field emission scanning electron microscopy, X‐ray diffraction, and atomic force microscopy were utilized to characterize the prepared composite electrodes. The best conditions were: 0.3 mA cm−2 current density and 0.64 M H2SO4 concentration. The electrosorption performance of the MnO
The goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
In this paper, we formulate and study a new property, namely indeterminacy (neutrosophic) of the hollow module. We mean indeterminacy hollow module is neutrosophic hollow module B (shortly Ne(B)) such that it is not possible to specify the conditions for satisfying it. Some concepts have been studied and introduced, for instance, the indeterminacy local module, indeterminacy divisible module, indeterminacy indecomposable module and indeterminacy hollow-lifting module. Also, we investigate that if Ne(B) is an indeterminacy divisible module with no indeterminacy zero divisors, then any indeterminacy submodule Ne(K) of Ne(B) is an indeterminacy hollow module. Further, we study the relationship between the indeterminacy of hollow an
... Show MoreIn present work, new tetra-dentate ligand, titled 3,5-bis ((E)-5-Bromo-2-hydroxy benzylidene amino) benzoic acid (H3L), was prepared via an acid-catalyzed condensation process. New four metallic ligand complexes with Co(II), Ni(II), Cu(II) and Zn(II) ions, were also prepared from the refluxing of equivalent moles. Ligand's structure and its complexes; were confirmed by numerous characterization methods, including Ultraviolet-Visible, Infrared, Mass Spectrometer, 1H and 13C Nuclear Magnetic Resonance spectra, atomic absorption, magnetic moments, and molar conductivity measurements. The results of the spectroscopic analyzes proved that the prepared ligand acts as tetradentate bi-ionic ligand and it was bond
... Show MoreThe optimum separators operating pressure is determined by using flash calculations and equilibrium ratios. In this study, the optimum separator size for Jambur field is calculated by using equations introduced by Arnold and Stewart and API12J Specification [1]. Because Jambur field has a high production rate two conditions are taken in the study to determine separator size, first based on production rate 80,000 bbl/day and second based on split the production between two banks A and B (40,000 bbl/day for each bank). The calculation resulted in optimum separator pressure for the first stage of 700 psi, and the second stage of 300 psi, and the third stage of 120 psi. The results show that as the number of stages increased above three
... Show More