In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreHuman beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems. Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.
Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreThe effectiveness of detecting and matching of image features using multiple views of a specified scene using dynamic scene analysis is considered to be a critical first step for many applications in computer vision image processing. The Scale invariant feature transform (SIFT) can be applied very successfully of typical images captured by a digital camera.
In this paper, firstly the SIFT and its variants are systematically analyzed. Then, the performances are evaluated in many situations: change in rotation, change in blurs, change in scale and change in illumination. The outcome results show that each algorithm has its advantages when compared with other algorithms
The Financial systems can be classified into two types. The first is the market–oriented, which is applied in United States and United Kingdom. While the second is bank-oriented as in Japan and Germany.
This study tries to explain the reasons which make some countries adopt the first one instead of the second, and the contrary. So the study consists of three sections. The first deals with the concept of financial system and it are functions. The second displays the indicators which are used to classify the financial systems, while the third one is devoted to the factors that determine the type of financial system .These sections followed by some conclusions.
This study presents the results of atmospheric particulates sampling using high volume air sampler for selected places at Al Tuwaitha nuclear site. The collected samples were analyzed for gross alpha /beta radioactivity using Ludlum model 3030 and measurement particles activity in Al Tuwaitha nuclear site and the surrounding areas for the period from 28/12/2016 to 13/4/2017.The measurement of activity concentrations ranged from (0.42±0.03 to 4.18±0.13) Bq/m3 for alpha particles and from(0.93±0.06 to 9.21±0.26) Bq/m3for beta particles. The activity concentration of nuclides inversely proportional with air temperature and wind speed while humidity is directly proportional with it. Highest value of activity concentration has been found at(
... Show MoreThis paper aimed to test random walking through the ISX60 market index for the ability to judge market efficiency at a weak level. The study used Serial Correlation Test, the Runs Test, the Variance Ratio Test, as well as the Rescaled Range Test.The population of the study represents of Iraq Stock Exchange. The study concluded accepting the hypothesis of the study that the returns of the ISX60 market index in the Iraqi market for securities does not follow the random walking in general and as a result the Iraq market for securities is inefficient within the weak level of efficiency and the study recommended need a supervisors work in the Iraqi market for securities to activate all means a which will work to communication with information
... Show MoreIn this paper, introduce a proposed multi-level pseudo-random sequence generator (MLPN). Characterized by its flexibility in changing generated pseudo noise (PN) sequence according to a key between transmitter and receiver. Also, introduce derive of the mathematical model for the MLPN generator. This method is called multi-level because it uses more than PN sequence arranged as levels to generation the pseudo-random sequence. This work introduces a graphical method describe the data processing through MLPN generation. This MLPN sequence can be changed according to changing the key between transmitter and receiver. The MLPN provides different pseudo-random sequence lengths. This work provides the ability to implement MLPN practically
... Show Moremodel is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales