Preferred Language
Articles
/
4haaAowBVTCNdQwCbvVI
Optimizing performance of water-cooled photovoltaic-thermal modules: A 3D numerical approach
...Show More Authors

To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and multi-objective optimizations are performed using the predictive model to optimize the thermal and electrical productivity under different scenarios. The findings indicate the significance of the thermal exergy effectiveness, as evidenced by its low P-value for all solar system responses, indicating its crucial role in the predictive model. For single-objective optimization, the desirability is equal to 1 in cases where only heat transfer efficiency, whole energy effectiveness, or thermal exergy efficiency is maximized or only destroyed exergy is minimized. The improvements in energy and exergy efficiencies range from 3.55% to 69.13%, with the amount of destroyed exergy reduced by 81.47% compared to the base case. For multi-objective optimization, desirability values exceeding 0.829 and 0.655 are obtained for single and multi-objective scenarios, respectively, indicating that the expected performance is within desirable limits. The findings provide valuable insights for designing high-efficiency photovoltaic/thermal systems and addressing their challenges and limitations.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Engineering
A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field
...Show More Authors

Constructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Engineering
A High Resolution 3D Geomodel for Giant Carbonate Reservoir- A Field Case Study from an Iraqi Oil Field
...Show More Authors

Constructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along

... Show More
Crossref (1)
Crossref
Publication Date
Fri Mar 10 2017
Journal Name
Superconductor Science And Technology
Conceptual designs of conduction cooled MgB<sub>2</sub> magnets for 1.5 and 3.0 T full body MRI systems
...Show More Authors

View Publication
Scopus (61)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of SiC particles and water absorption on thermal conductivity of epoxy reinforcement by (bi-directional) glass fiber
...Show More Authors

In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 08 2022
Journal Name
Journal Of Computational Design And Engineering
Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system
...Show More Authors
Abstract<p>Phase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge </p> ... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Spe/aapg/seg Asia Pacific Unconventional Resources Technology Conference
Optimizing the dispersion of coal fines using Sodium Dodecyl Benzene Sulfonate
...Show More Authors

Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium

... Show More
Scopus (13)
Scopus
Publication Date
Fri Dec 29 2023
Journal Name
Iraqi Journal Of Agricultural Sciences
OPTIMIZING MEDIA STERILIZATION VIA CHLORINE DIOXIDE AND AUTOCLAVING OF PAULOWNI MICROPROPAGATION
...Show More Authors

This study was aimed to investigat integrated system for in vitro growth of paulownia plants by assessing the efficacy of chlorine dioxide (ClO2) as an alternative to autoclave in sterilizing culture medium. Therefore, this study was devised to compare autoclave sterilization at three different times (5, 10, and 15) minutes and three different concentrations of ClO2 (0, 0.4, 0,8, 1) mg/L. The results showed that, compared with (0.4) mg/L concentration,  concentrations of (0.8 and 1) mg/L are more effective at sterilizing the culture medium. ClO2 sterilization improved individual single node growth more than autoclave sterilization. Since ClO2 is non-toxic, it could be used as a safe alternative to autoclave when propagating paulown

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-Fully Cancellation Fuzzy Modules
...Show More Authors

  In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by  Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Ejectivity and goldie-extending modules
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Mar 06 2010
Journal Name
J. Of University Of Anbar For Pure Science
Some Results on Epiform Modules
...Show More Authors

The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.

Preview PDF