Preferred Language
Articles
/
4haRUIkBVTCNdQwCf4iW
Coupled Laplace-Decomposition Method for Solving Klein- Gordon Equation
...Show More Authors

In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.

Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2009
Journal Name
The Third International Conference Of The College Of Science –university Of Baghdad
On Maximal solution of nonlinear operator equation
...Show More Authors

Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions
...Show More Authors

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jul 16 2018
Journal Name
Mathematics
Decomposition of Dynamical Signals into Jumps, Oscillatory Patterns, and Possible Outliers
...Show More Authors

In this note, we present a component-wise algorithm combining several recent ideas from signal processing for simultaneous piecewise constants trend, seasonality, outliers, and noise decomposition of dynamical time series. Our approach is entirely based on convex optimisation, and our decomposition is guaranteed to be a global optimiser. We demonstrate the efficiency of the approach via simulations results and real data analysis.

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2017
Journal Name
Catalysis Science & Technology
Decomposition of selected chlorinated volatile organic compounds by ceria (CeO 2)
...Show More Authors

Chlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo

... Show More
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces
...Show More Authors

Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences
...Show More Authors

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref