Preferred Language
Articles
/
4UJpUZsBMeyNPGM3FNlb
Low-complexity Deep Learning for Joint Channel-type Identification and SNR Estimation in MIMO-OFDM Using CNN–BRNN with LUT Labels
...Show More Authors

Channel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). The method was tested on Single-Input Single-Output (SISO),the 2×2 Alamouti space-time code,and 4×4 Quasi-Orthogonal Space-Time Block Coding (QO-STBC) in six standard situations: Nakagami fading,Log-Normal shadowing,Multipath fading,Gaussian,Rayleigh fading,and Rician fading. Channel identification was nearly perfect,and the SNR was robust,with most SNR errors being in adjacent bins indicating stable behaviour. The model reached 99.68% validation accuracy with 8.14 × 10−5 bit error rate (BER) and reduced complexity of 1.78 × 108 for high order of subcarriers The method’s novelty lies in accurate,low-complexity CE support from raw symbols and its demonstrated impact on end-to-end BER pilotless CE and SNR estimation to select equalizer without CSI reconstruction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 25 2009
Journal Name
Wireless Personal Communications
A N-Radon Based OFDM Trasceivers Design and Performance Simulation Over Different Channel Models
...Show More Authors

In this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (24)
Crossref
Publication Date
Tue Jul 01 2025
Journal Name
Mastering The Minds Of Machines
Unsupervised Learning: Discovering Patterns without Labels: Health Care, E-Commerce, and Cybersecurity
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Dec 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Performance Analysis for Hybrid Massive MIMO FSO/RF Links Based on Efficient Channel Codes
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 15 2023
Journal Name
International Journal Of Advances In Intelligent Informatics
An automatic lip reading for short sentences using deep learning nets
...Show More Authors

One study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Ieee Access
Enhanced Spectral Efficiency in RIS-Assisted MIMO Systems Through Joint Precoding and RIS Configuration
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 12 2017
Journal Name
Int'l Journal Of Computing, Communications & Instrumentation Engg.(ijccie)
Variant Parameters effect on OFDM Estimation Power Consumption
...Show More Authors