Cloud-based Electronic Health Records (EHRs) have seen a substantial increase in usage in recent years, especially for remote patient monitoring. Researchers are interested in investigating the use of Healthcare 4.0 in smart cities. This involves using Internet of Things (IoT) devices and cloud computing to remotely access medical processes. Healthcare 4.0 focuses on the systematic gathering, merging, transmission, sharing, and retention of medical information at regular intervals. Protecting the confidential and private information of patients presents several challenges in terms of thwarting illegal intrusion by hackers. Therefore, it is essential to prioritize the protection of patient medical data that is stored, accessed, and shared on the cloud to avoid unauthorized access or compromise by the authorized components of E-healthcare systems. A multitude of cryptographic methodologies have been devised to offer safe storage, exchange, and access to medical data in cloud service provider (CSP) environments. Traditional methods have not been effective in providing a harmonious integration of the essential components for EHR security solutions, such as efficient computing, verification on the service side, verification on the user side, independence from a trusted third party, and strong security. Recently, there has been a lot of interest in security solutions that are based on blockchain technology. These solutions are highly effective in safeguarding data storage and exchange while using little computational resources. The researchers focused their efforts exclusively on blockchain technology, namely on Bitcoin. The present emphasis has been on the secure management of healthcare records through the utilization of blockchain technology. This study offers a thorough examination of modern blockchain-based methods for protecting medical data, regardless of whether cloud computing is utilized or not. This study utilizes and evaluates several strategies that make use of blockchain. The study presents a comprehensive analysis of research gaps, issues, and a future roadmap that contributes to the progress of new Healthcare 4.0 technologies, as demonstrated by research investigations.
The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
Background: Medical-surgical nurses are responsible of providing competent care to clients with a wide-array of acute and chronic health problems. This challenging task requires arming nurses with advanced competencies of health literacy to effectively educate their clients. However, evidence about medical-surgical nurse’s health literacy-related knowledge and experience is limited. Purposes: This study aimed to determine the level of the health literacy-related knowledge and experience among medical-surgical nurses.Design: A descriptive-cross-sectional study was conducted among a total sample of 177 nurses who were practicing in medical-surgical wards in teaching hospitals in Iraq. A convenience sampling method was used to sele
... Show MoreA new simultaneous spectrophotometric-kinetic method was developed to determine phenylephrine (PHEN) and tetracycline (TETR) via H-point standard addition method (HPSAM). The proposed procedures rely on the measurements of the difference in the rate of charge-transfer (CT) reaction between each of PHEN and TETR as electron donors with p-Bromanil (p-Br) as an electron acceptor. Different experimental factors which affect the extent of the complex formation were investigated by monitoring the value of absorbance at 446 nm. Time pair of 50 -100 sec was selected and employed, among different examined pairs since it results in the highest accuracy for HPSAM-plot. Linear calibration graphs in the concentration ranges of 10.0-40.0 and 10.0–50.0
... Show MoreThis research aims to study the mechanism of application of international specification requirements (ISO 9001: 2015) at the Iraqi Center- Korean Vocational Training return to vocational training department at the Ministry of Labour and Social Affairs for the purpose of preparing and creating the center to get a certificate of conformity with the requirements of the standard (ISO 9001: 2015) that would elevate the level of performance and services provided in the respondent Center after it is identified and the study of the reality of the quality management system by identifying strengths and weaknesses in the system to diagnose the gap and find ways to address that gap, and adopted the researchers the case study method to conduc
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreThe main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Big data of different types, such as texts and images, are rapidly generated from the internet and other applications. Dealing with this data using traditional methods is not practical since it is available in various sizes, types, and processing speed requirements. Therefore, data analytics has become an important tool because only meaningful information is analyzed and extracted, which makes it essential for big data applications to analyze and extract useful information. This paper presents several innovative methods that use data analytics techniques to improve the analysis process and data management. Furthermore, this paper discusses how the revolution of data analytics based on artificial intelligence algorithms might provide
... Show MoreThe oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a