Cloud-based Electronic Health Records (EHRs) have seen a substantial increase in usage in recent years, especially for remote patient monitoring. Researchers are interested in investigating the use of Healthcare 4.0 in smart cities. This involves using Internet of Things (IoT) devices and cloud computing to remotely access medical processes. Healthcare 4.0 focuses on the systematic gathering, merging, transmission, sharing, and retention of medical information at regular intervals. Protecting the confidential and private information of patients presents several challenges in terms of thwarting illegal intrusion by hackers. Therefore, it is essential to prioritize the protection of patient medical data that is stored, accessed, and shared on the cloud to avoid unauthorized access or compromise by the authorized components of E-healthcare systems. A multitude of cryptographic methodologies have been devised to offer safe storage, exchange, and access to medical data in cloud service provider (CSP) environments. Traditional methods have not been effective in providing a harmonious integration of the essential components for EHR security solutions, such as efficient computing, verification on the service side, verification on the user side, independence from a trusted third party, and strong security. Recently, there has been a lot of interest in security solutions that are based on blockchain technology. These solutions are highly effective in safeguarding data storage and exchange while using little computational resources. The researchers focused their efforts exclusively on blockchain technology, namely on Bitcoin. The present emphasis has been on the secure management of healthcare records through the utilization of blockchain technology. This study offers a thorough examination of modern blockchain-based methods for protecting medical data, regardless of whether cloud computing is utilized or not. This study utilizes and evaluates several strategies that make use of blockchain. The study presents a comprehensive analysis of research gaps, issues, and a future roadmap that contributes to the progress of new Healthcare 4.0 technologies, as demonstrated by research investigations.
In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreCognitive-behavioral therapy is one of the most important relatively recent; treatment programs that attempt to modify behavior and control psychological disorders by modifying the individual's thinking style and awareness of himself and his environment, and cognitive reconstruction by replacing negative thoughts with positive ones. The current study aimed to know the effectiveness of a cognitive behavioral treatment program in reducing nervous fatigue among mothers of children with cerebral palsy. The sample on which the nervous fatigue scale was applied consisted of (30) mothers whose son suffers from cerebral palsy, and the results indicated that (24) mothers suffer from nervous fatigue. This sample was divided
... Show MoreFlexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreAcinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show More