A histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric p
... Show MoreA histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric pits in the gizzard, which are full with koilin. Lamina properia in both types contained gastric g
... Show MoreIn this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreIn the city of Hebron, small business industrial organizations face a major challenge related to its ability to reach, attract and sustain a sufficient number of customers in order to ensure its continuity and sustainability. The research problem is summarized in an attempt to reveal how the e-marketing could improve and support the marketing effectiveness of small business industrial organizations in the city of Hebron/Palestine. The importance of this research stems from the fact that it addresses a new knowledge branch of the field of marketing, which is electronic marketing for small business organizations, and the fact that the research highlights appropriate marketing solutions for these organizations in light of the Intern
... Show MoreThe concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.