This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreThis paper is devoted to the analysis of nonlinear singular boundary value problems for ordinary differential equations with a singularity of the different kind. We propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the singular points and its numerical approximation. Two examples are presented to demonstrate the applicability and efficiency of the methods. Finally, we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this paper, the effect size measures was discussed, which are useful in many estimation processes for direct effect and its relation with indirect and total effects. In addition, an algorithm to calculate the suggested measure of effect size was suggested that represent the ratio of direct effect to the effect of the estimated parameter using the Regression equation of the dependent variable on the mediator variable without using the independent variable in the model. Where this an algorithm clear the possibility to use this regression equation in Mediation Analysis, where usually used the Mediator and independent variable together when the dependent variable regresses on them. Also this an algorithm to show how effect of the
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
The problem of reconstruction of a timewise dependent coefficient and free boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as nonlocal overdetermination conditions have been considered. A Crank–Nicolson finite difference method (FDM) combined with the trapezoidal rule quadrature is used for the direct problem. While the inverse problem is reformulated as a nonlinear regularized least-square optimization problem with simple bound and solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. Since the problem under investigation is generally ill-posed, a small error in the input data leads to a huge error in the output, then Tikhonov’s regularization technique is app
... Show MoreThis paper devoted to the analysis of regular singular boundary value problems for ordinary differential equations with a singularity of the different kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
The main goal of the current research is to know -Environmental problems included in the content of the two science books (chemistry units) for intermediate stage
A list of environmental problems had been prepared and consisting of (8) main areas which are (air and atmosphere pollution, water pollution, soil pollution, energy, disturbance of biodiversity and environmental balance, waste management, food and medicinal pollution, investment of mineral wealth). Of which (60) sub-problems, at that time the researcher analyzed the two science books (two chemistry units) for the intermediate stage of the academic year (2020-2021) in light of the list that was prepared, and the validity and consisten
... Show More