Preferred Language
Articles
/
4RaxtIcBVTCNdQwCWVwP
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

Crossref
View Publication
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method
...Show More Authors

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solution of Nonlinear High Order Multi-Point Boundary Value Problems By Semi-Analytic Technique
...Show More Authors

In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
The Numerical Technique Based on Shifted Jacobi-Gauss-Lobatto Polynomials for Solving Two Dimensional Multi-Space Fractional Bioheat Equations
...Show More Authors

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Classical Continuous Optimal Control for Quaternary Nonlinear Parabolic Boundary Value Problems
...Show More Authors

In this paper, our purpose is to study the classical continuous optimal control (CCOC)  for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition
...Show More Authors

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Applied Numerical Mathematics
Multiple time-dependent coefficient identification thermal problems with a free boundary
...Show More Authors

View Publication
Scopus (28)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
A Multilevel Approach for Stability Conditions in Fractional Time Diffusion Problems
...Show More Authors
Abstract<p>The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Recovering Time-Dependent Coefficients in a Two-Dimensional Parabolic Equation Using Nonlocal Overspecified Conditions via ADE Finite Difference Schemes
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref