This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
The aim of this research is to study the effect of heat transfer on the oscillating flow of the hydrodynamics magnetizing Eyring-Powell fluid through a porous medium under the influence of temperature and concentration for two types of engineering conditions "Poiseuille flow and Couette flow". We used the perturbation method to obtain a clear formula for fluid motion. The results obtained are illustrated by graphs.
In this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and
... Show MoreAlmost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreThe present paper concerns with peristaltic analysis of MHD viscous fluid in a two dimensional channel with variable viscosity through a porous medium under the effect of slip condition. Along wave length and low Reynolds number assumption is used in the problem formulation. An analytic solution is presented for the case of hydrodynamic fluid while for magneto hydrodynamic fluid a series solution is obtained in the small power of viscosity parameter. The salient features of pumping and trapping phenomena are discussed in detail through a numerical integration. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail. When .
This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show More The purpose of this research is to investigate the effects of rotation on heat transfer using
inclination magnetohydrodynamics for a couple-stress fluid in a non-uniform canal. When the
Reynolds number is low and the wavelength is long, math formulas are used to describe the stream
function, as well as the gradient of pressure, temperature, pressure rise and axial velocity per
wavelength, which have been calculated analytically. The many parameters in the current model
are assigned a definite set of values. It has been noticed that both the pressure rise and the pressure
gradient decrease with the rise of the rotation and couple stress, while they increase with an
increase in viscosity and Hartmann nu
In this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a single machine to minimize the sum total completion time, total tardiness, total earliness, number of tardy jobs and total late work with unequal release dates. We proposed six heuristic methods for account upper bound. Also to obtain lower bound (LB) to this problem we modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And some dominance rules were suggested. Also, two special cases were derived. Computational experience showed the proposed (B&B) algorithm was effective in solving problems with up to (16) jobs, also the upper bounds and the lower bound were effective in restr
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,