Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of the user for user authentication. Back Propagation Neural Network (BPNN) and the Probabilistic Neural Network (PNN) are used as a classifier to discriminate between the authentic and impostor users. Furthermore, four keystroke dynamics features namely: Dwell Time (DT), Flight Time (FT), Up-Up Time (UUT), and a mixture of (DT) and (FT) are extracted to verify whether the users could be properly authenticated. Two datasets (keystroke-1) and (keystroke-2) are used to show the applicability of the proposed Keystroke dynamics user authentication system. The best results obtained with lowest false rates and highest accuracy when using UUT compared with DT and FT features and comparable to combination of DT and FT, because of UUT as one direct feature that implicitly contained the two other features DT, and FT; that lead to build a new feature from the previous two features making the last feature having more capability to discriminate the authentic users from the impostors. In addition, authentication with UUT alone instead of the combination of DT and FT reduce the complexity and computational time of the neural network when compared with combination of DT and FT features.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreThis paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe
On the basis of known coumarin-based prodrug system, a novel coumarin-based mutual prodrug of 5-fluorouracil and dichloroacetic acid was designed, synthesized and evaluated as a promising oral chemotherapeutic agent basing on in vitro stability study in HCl buffer (pH 1.2) and in phosphate buffer (pH 7.4), as well as in vitro release study in human serum. The chemical structure of prodrug was confirmed by analyzing its FTIR, 1H NMR, 13C NMR and MS-ESI spectra. The results of in vitro kinetic study indicated that the prodrug was significantly stable in HCl and in phosphate buffers, and was hydrolyzed in human serum followed pseudo first order kinetics.
Keywords: Coumarin-bas
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show More