The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0
... Show MoreMercury can have significant impact on petroleum and related industries, it is also known to poison catalysts used in refining processes.Wet ash methods was widely used in determination of mercury in crude oil but the elemental and organic mercury are volatile and losses are also expected .An investigation of the use of Aqueous solution to prevent loss of mercury during wet digestion resulted in consistently good recoveries from crude oil samples.In this research diluted aqueous solution of sodium polysulfide is used and the parameters studied are polysulfide aqueous solution concentration, time, and ratio of the aqueous solution to crude oil,and will take different forms of heavy crude oil from several fields and the previous measuremen
... Show MoreThe pollution of aquatic ecosystems with toxic heavy metals is representing a major environmental issue, as a result of releasing these metals to ecological ambient without treatment, leading to their persistence and non-biodegradation in the environment. Various traditional methods are utilized as an attempt to remove heavy metals from waste water but still without making any actual progress. This study hypothesizes that Eichhornia crassipes (water hyacinth) dried leaves powder is potential in removing some of these heavy metals (HM), including lead, copper, cadmium and chrome from aqueous solutions via biosorption influenced by some variable experimental factors. This aim was approached by using two different experimental conditions: (
... Show MoreThe present study deals with the application of an a bundant low cost biosorbent sunflower shell for metal ions removal. Lead, Cadmium and Zinc were chosen as model sorbates. The influences of initial pH, sorbent dosage, contact time, temperature and initial metal ions concentration on the removal efficiency were examined. The single ion equilibrium sorption data were fitted to the non-competitive Langmuir and Freundlich isotherm models. The Freundlich model represents the equilibrium data better than the Langmuir model. In single, binary and ternary component systems,Pb+2 ions was the most favorable component rather than Cd+2 and Zn+2 ions. The biosorption kinetics for the three metal ions followed the p
... Show MoreOne of the significant environmental problems is the pollution of water by dyes;. Biological treatment method was used, which is one of the effective ways to reduce this sort of pollution as it is environment friendly, economic and does not require any expertise. Under controlled conditions, this study estimated the efficacy of dry biomass for Bacillus cereus to reduce Direct Blue 2 dye from the aqueous solution. The optimum conditions such as pH values, contact time and concentration of dyes, were used in this research. The end results showed that the adsorption efficiency, when using a weight of bacterial biomass 0.2 g/50mL, reached 69.2% at a concentration of 10 ppm after one hour at 40°C and pH5. While it reached 5
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o