Three series of monomers, polymers and thioester cyclic compounds containing 4H-1,2,4-triazol-3-thiol moiety were synthesized and examined for their liquid crystalline properties. All monomers, polymers and thioester compounds were characterized by elemental analysis and FTIR, 1 H-NMR and mass spectroscopy. The phase transition and mesomorphic properties were investigated by polarized optical microscope (POM) and differential scanning calorimetry (DSC). The monomer with terminal phenyl substituent display dimorphism nematic and smectic A (SmA) mesophases. The corresponding polymers derived from acrylic and phenyl acrylic acid monomers show nematic mesophase. The only thioester cyclic compound derived from terephtaloyl chloride show nemati
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show MoreSynthesis of 2-(4-Acetyl-phenyl)-4-nitro-isoindole-1, 3-dione chalcones were performed by fusion of 3-nitro phthalic anhydride with p-aminoacetophenone. Then the later was grinded with different aromatic aldehydes in the presence of sodium hydroxide to produce new chalcones derivatives A3-10 without using any solvent formation of new N- arylphthailimide chalcones were confirmed by FT-IR,1HNMR, 13CNMR spectroscopy and all final compounds were tested for their antifungal and antibacterial activity some of them showed more biological activity than the standard drugs
Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe leaves of globe artichoke, Cynara scolymus Family Asteraceae/ compositea have long – used in traditional medicine and now included in British and European Pharmacopeia, the British Harbal Pharmacopeia and complete German Commission E monographs.The plant originally comes from Mediterranean region and North Africa and cultivated around the world. The flowers are used worldwide for nutrition purposes and the leaves for medical purposes including hepatic affections. The plant wildly distributed in Iraq in the watery lines and boundary of the field.The plant contains many phytochemicals such as the bitter phenolic acids whose choleretic and hypocholestremic as these compounds are antioxidant. Other materials to h
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show More