Fusidic acid (FA) is a well-known pharmaceutical antibiotic used to treat dermal infections. This experiment aimed for developing a standardized HPLC protocol to determine the accurate concentration of fusidic acid in both non-ionic and cationic nano-emulsion based gels. For this purpose, a simple, precise, accurate approach was developed. A column with reversed-phase C18 (250 mm x 4.6 mm ID x 5 m) was utilized for the separation process. The main constituents of the HPLC mobile phase were composed of water: acetonitrile (1: 4); adjusted at pH 3.3. The flow rate was 1.0 mL/minute. The optimized wavelength was selected at 235 nm. This approach achieved strong linearity for alcoholic solutions of FA when loaded at a serial concentration ranging from 12.5 to 400 µg/ml. Furthermore, the approach showed good stability and achieved full recovery and an effective separation for FA from the abovementioned formulation. Besides, the protocol validation revealed good robustness at a temperature range of 23 to 27, pH 3.0 to 3.5, detection wavelength 230 to 240 nm, flow rate 0.8 and 1.2 and mobile phase contents of (78:22 to 82:18 acetonitrile/ water). The limit of Detection was obtained 1.33 µg/ml and limit of Quantification was 4.04 µg/ml for FA that uploaded through mentioned formulations. All the validation parameters were within the acceptance criteria, as per ICH , US Pharmacopeia requirements. Overall, an affordable and reproducible method could be achieved for the detection and quantification of fusidic acid within the nano-emulsion based gels formulas.
Enhanced oil recovery is used in many mature oil reservoirs to increase the oil recovery factor. Surfactant flooding has recently gained interest again. To create micro emulsions at the interface between crude oil and water, surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, thus achieving very low interfacial tension, which consequently assists mobilize the trapped oil.
In this study a flooding system, which has been manufactured and described at high pressure. The flooding processes included oil, water and surfactants. 15 core holders has been prepared at first stage of the experiment and filled with washed sand grains 80-500 mm and then packing the sand to obtain sand packs
... Show MoreAvery large numbers of articles are made by powder metallurgical methods using electrolytically reduced metal powders. Iron powder is one of these powders which play an important role in this field. Its preparation by electrolytic method is economic in comparison with the traditional methods (Atomization and carbonyl processes).
An electrochemical cell consisting of two electrodes (stainless steel cathode and iron anode, 99.9%) was used to study the electrolytic preparation of iron powder with particle size less than 106µm directly as powde1y form. Ferrous sulphate electrolyte was used containing sodium chloride as a stabilizing agent. The produced powder was thoroughly washed with an acidified distilled water and absolute ethan
... Show MoreIn this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
Abstract Background: This in-vitro study was to evaluated bitewing radiograph and tactile examination for detection secondary caries adjacent to amalgam restorations. Material and method: Sixty primary extracted molars with class I and class II amalgam restorations were selected from children, and examined by bitewing radiographs were taken by using film holders and interpreted on a backlit screen without magnification. Then, we used tactile examination with blunt probe. Result: The result of this study showed that the best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve and the sensitivity, specificity and accuracy of the techniques were calculated for enamel (
... Show More