This work involves hard photon rate production from quark -gluon plasma QGP interaction in heavy ion collision. Using a quantum chromodynamic model to investigate and calculation of photons rate in 𝑐𝑔 → 𝑠𝑔𝛾 system due to strength coupling, photons rate, temperature of system, flavor number and critical. The photons rate production computed using the perturbative strength models for QGP interactions. The strength coupling was function of temperature of system, flavor number and critical temperature. Its influenced by force with temperature of system, its increased with decreased the temperature and vice versa. The strength coupling has used to examine the confinement and deconfinement of quarks in QGP properties and influence on the photon rate production. In our approach, we calculate the photons rate depending on the strength coupling, photons rate and temperature of system with other factors. The results plotted as a function of the photons energy. The photons rate was decreased with increased temperature and increased with decreased with strength coupling
Carbon Monoxide (CO) has a significant indirect effect on greenhouse gasses due to its ozone and carbon dioxide precursor, and its mechanism of degradation involving the hydroxyl radical (OH) which control the oxidizing ability of the tropospheric. To understand the effect of human activities on atmospheric composition, accurate estimates of the sources of atmospheric carbon monoxide (CO) are necessary. MOPITT (Measurements of Pollution in the Troposphere) is a NASA Terra satellite instrument designed to allow both Thermal-Infra-Red (TIR) and Near-Infra-Red (NIR) observations to be used to collect vertical CO profiles in the Troposphere via the concept of correlation spectroscopy. The objective of the current stu
... Show MoreIn this work the Aluminum plasma in Air produced by Nd: YAG pulsed laser, (λ = 1064 nm, τ = 6 ns) has been studied with a repletion rate of 10 Hz. The laser interaction in Al target (99.99%) under air atmosphere generates plasma, which is produced at room temperature; with variation in the energy laser from 600-900 mJ. The electron temperature and the electron density have been determined by optical emission spectroscopy and by assuming a local thermodynamic equilibrium (LTE) of the emitting species. Finally the electron temperature was calculated by the Boltzmann plot from the relative intensities of spectral lines and electron density was calculated by the Stark-broadening of emission line.
A Simple, rapid and sensitive extractive and spectrophotometric method has been described for the analysis of diphenhyldramine –HCl (DPH) in pure form and in pharmaceutical formulations. The method is based on the formation of chloroform soluble ion-pair complex with Bromophenol blue(BPB) in a phthalate buffer at pH 3.0.The extracted complex shows maximum absorbance at 410 nm. Beer's law is obeyed in the concentration range 0.2-25.0 µg.ml-1. The molar absorptivity and Sandell's sensitivity for the system being 2.416x104 L.mol-1.cm-1 and 0.012µg.cm-2, respectively. The limit of detection was found to be 0.155 µg.ml-1. The proposed me
... Show MoreA total of 551 water samples (drinking and raw water) were collected In this study, Aeromonas.hydrophila, were detected by biochemical tests and PCR (16s rRNA gene). The results of identification showed that A.hydrophila had recovery rate 63 isolates (49.21%). The results revealed that all A.hydrophila isolates were PCR positive or the 16S rRNA gene and the results of sequencing showed that two isolates of A.hydrophila(local isolates) had percentage similarities 100% with A. hydrophila ATCC 7966 in GenBank database .All strains had a minimal Inhibitory Concentration(MIC) distribution pattern for lead cetate rranged (900-1200 μg/ml), and mercury chloride ranged (40-80 μg /ml).
The current study aims to assess the water quality of the Al-Diwaniyah River in the city of Al-Diwaniyah to drink in terms of chemical properties and heavy metals and their impact on the health of the local population. The results showed that most of the parameters in the river water are of low concentrations due to the limited human activities in polluting the river water. The study concluded that the water quality is suitable for drinking depending on major cations and anions in all seasons. The Heavy Metal Pollution Index (HPI) showed that the river water was clean and safe, except two slightly polluted samples. The study concluded that river water for drinking or various domestic uses does not pose any danger to human heal
... Show MoreConcentrations of heavy metals (Copper Cu, Iron Fe, Manganese Mn, Cadmium Cd, and Lead Pb) have been studied in river crab Sesarma boulengeri (Outer part of the shield and interior tissues) which caught from two stations in Shatt Al – Arab river (Salhia and Aldeir areas). Elements concentrations were measured by Flame Atomic Absorption Spectrophotometer, concentration of heavy metals in the internal tissues was higher than in the outer shield in both of the stations with the highest value of the elements was to iron 95.21 mg\ kg during the spring as well as copper was 55 mg\kg and manganese was 39.09 mg\kg. The study showed the presence of seasonal changes in the studied heavy metals concentrations values in the tissues of river crab;
... Show MoreA study on solvent extraction of Tellurium with Anthranilic acid in
water has been made. The effect of different parameters such as type of medium, time of equilibration, concentration of metal ion, solvent polarity and effect of anions and catins distribution ratio of tellrim (IV) were evaluated. The stoichometric ratio of the extracted species is determined by using two methods suh as slope analysis and mole ratio method and found to be (M: L) (1:4). The instability constant of complex was calculated as well.
A 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec. The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected veloci
... Show MoreWasit Governorate is characterized by industrials activities such as groups of asphalts and bricks factories, oil fields and thermal power plant, in addition to the agricultural activity that is widely separated, which leads to pollution of the surface soils with heavy metals. The main objective in this research is to assess heavy metals pollution and understand the distribution in the surface soils in the studied area. Twenty two surface soils samples were collected from 6 districts and 4 subdistricts within Wasit Governorate during April 2017. The results obtained showed that grain size analyzes are classified as sandy mud (sand 9.5%, silt 50.8 % and clays 39.8%). In the term of geochemic
... Show MoreSeveral industrial wastewater streams may contain heavy metal ions, which must be effectively removal
before the discharge or reuse of treated waters could take place. In this paper, the removal of copper( II)
by foam flotation from dilute aqueous solutions was investigated at laboratory scale. The effects of
various parameters such as pH, collector and frother concentrations, initial copper concentration, air flow
rate, hole diameter of the gas distributor, and NaCl addition were tested in a bubble column of 6 cm inside
diameter and 120 cm height. Sodium dodecylsulfate (SDS) and Hexadecyl trimethyl ammonium bromide
(HTAB) were used as anionic and cationic surfactant, respectively. Ethanol was used as frothers and the